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Abstract— In this paper, we present a systematic approach
for high-performance and efficient trajectory tracking control
of autonomous wheel loaders. With the nonlinear dynamic
model of a wheel loader, nonlinear model predictive control
(MPC) is used in offline trajectory planning to obtain a
high-performance state-control trajectory while satisfying the
state and control constraints. In tracking control, the non-
linear model is embedded into a Linear Parameter Varying
(LPV) model and the LPV-MPC strategy is used to achieve
fast online computation and good tracking performance. To
demonstrate the effectiveness and the advantages of the LPV-
MPC, we test and compare three model predictive control
strategies in the high-fidelity simulation environment. With the
planned trajectory, three tracking control strategies LPV-MPC,
nonlinear MPC, and LTI-MPC are simulated and compared
in the perspectives of computational burden and tracking
performance. The LPV-MPC can achieve better performance
than conventional LTI-MPC because more accurate nominal
system dynamics are captured in the LPV model. In addition,
LPV-MPC achieves slightly worse tracking performance but
tremendously improved computational efficiency than nonlinear
MPC.

I. INTRODUCTION

Wheel loaders are often used to transport materials on
mining and construction sites, as shown in Fig. 1. Currently,
wheel loaders are mostly controlled by trained human oper-
ators. The prolonged training process leads to global labor
shortages for operating heavy mining and construction equip-
ment. Besides life-threatening incidents, human operators
often have to operate the wheel loaders in extreme working
conditions, such as heavy dust and extreme temperatures [1].
Moreover, the frequent acceleration, deceleration, and steer-
ing actions of wheel loaders pose considerable challenges to
the wheel loader drivers, making it impossible to maintain
high working efficiency and quality over long operation
periods [2]. These issues stimulate the critical demands of
autonomous systems equipped on wheel loaders and other
articulated vehicles in extreme working conditions [3].

Wheel loaders consist of a front and rear body connected
by a hinge joint and a swing ring. In the articulated steering
process, the front and rear vehicle bodies are connected
by the hydraulic actuators to steer the vehicle [4]. This
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Fig. 1. A typical loading cycle of the wheel loader.

mechanism reduces the turning radius and improves the
maneuverability of the vehicle, which gives it good adapt-
ability in various operating environments [5]. However, this
steering mechanism introduces highly nonlinear dynamics,
hence imposes extra complexity on the trajectory planning
and tracking control problem.

Alshaer et al. [6] improved the Reeds and Shepp path
planning method to an autonomous wheel loader and applied
PID controller for trajectory tracking. Choi et. al. [7] adopted
the A∗ algorithm to optimize the global path of an articulated
vehicle. Shi et. al. [2] developed an adaptive MPC controller
to track the trajectory generated by an algorithm based on
rapidly exploring random tree. These trajectory planning
methods did not consider the full kinematic constraints of the
wheel loader, and the articulated angle was not considered
during planning. Therefore, the planned trajectory is hard
for the downstream controller to follow, and the planning
algorithm usually has to consider extra safety distance be-
tween the vehicle and obstacles. Shi et. al. [2] considered the
path curvature in the adaptive MPC controller to improve
the tracking performance. Nayl et al. [8] proposed a bug-
like path planning technique and used a switching MPC
controller considering varying slip angles and different ve-
locities. However, these MPC controllers used the linearized
system model at each time instant as the constant predictive
model during the prediction horizon. This will lead to a
compromised performance compared with nonlinear MPC
controllers because of the loss of nonlinear dynamics in the
prediction horizon. In [9], a sliding mode controller was
proposed, but the tracking performance of the articulated
angle was not considered by the controller. Similar issue can
also be found in [10] and [11].

The Linear Parameter Varying (LPV) control has received
lots of attention from academia and industry to address
the nonlinear systems, including automotive [12], [13],
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aerospace [14], medical engineering [15] and robotics [16].
There are emerging applications using LPV model in model
predictive control on autonomous driving. Alcala et. al. [17]
developed a trajectory tracking controller using LPV-MPC
for the race car. Cheng [18] used the model predictive
control on LPV model of lateral dyanmics to design steering
actions in path tracking. The LPV model has a linear
representation of system matrices, which are dependent on
scheduling parameters embedded from nonlinear dynamics.
In this way, the control design can take the benefit of
linear formulation and address the nonlinear dynamics. The
computational complexity of the optimization problem can
be greatly simplified from nonlinear programming. Since
the scheduling parameters still involve nonlinear dynamics
of state and control inputs, the system dynamics don’t
lose nonlinearity. Therefore, the LPV model will produce
more accurate predictions than adaptive LTI-MPC, whose
predictive model is obtained by iterative linearization along
the planned trajectory.

In this paper, we present a systematic approach for au-
tonomous wheel loader driving system, which consists of
offline high-performance planning by nonlinear MPC and
online tracking control using LPV-MPC. With the nonlinear
model and refined constraints on states and control inputs, a
high-performance trajectory is planned using nonlinear MPC
containing information of all scheduling parameters used in
the LPV model. Due to the heavy computational complexity,
trajectory planning is conducted offline to generate the nom-
inal trajectory, and the relatively static environment factors
and constraints are considered. After planning is done, the
LPV-MPC strategy is used to track the nominal trajectory.
With the sequences of state-control trajectory, the nonlinear
model is converted into a quasi-LPV model by writing the
nonlinear terms to time-varying scheduling parameters. The
LPV model is then used in MPC as the predictive model
to capture the nominal nonlinear dynamics in the prediction
horizon.

The main contributions of this work are three-fold: 1)
An architecture consisting of nonlinear MPC for offline
planning and LPV-MPC for online tracking control, that
is able to complete the whole loading cycle of the wheel
loader; 2) Developing the LPV model from the nonlinear
model for wheel loader tracking control; 3) Demonstrating
the outstanding tracking performance of LPV-MPC but with
great computational efficiency. Besides the heavy-duty wheel
loaders, the proposed architecture of planning and control
can be easily applied to other articulated vehicles in an
unstructured environment.

The rest of this paper is organized as follows. Section II
introduces the nonlinear model of the wheel loader and the
nonlinear MPC technique to plan the state-control trajectory.
Section III formulates the LPV-MPC problem for tracking the
planned trajectory. Section V then presents the simulations
in a high-fidelity environment and compares the tracking
performances and computational burden of LPV-MPC with
nonlinear MPC and adaptive LTI-MPC. At last, conclusions
are made and future work is discussed.

II. MODELING AND TRAJECTORY PLANNING OF
ARTICULATED VEHICLE

A. Nonlinear model

The wheel loader considered in this paper is mainly
operated in low-speed conditions, in which the slip effect is
minor. Therefore, the tire slip angle and lateral forces acting
on the tires are not considered. The kinematic model is used
for both trajectory planning and tracking control.

Fig. 2. The wheel loader model used for planning and control design.

The bi-cycle kinematic of the wheel loader is depicted in
Fig. 2, where each axle being composed of two wheels is
replaced by a unique wheel. (xf , yf ) and (xr, yr) are the
positions of the center points of the front and rear wheel
axle, respectively; θ is the rear vehicle body heading angle;
γ is the articulated angle, that is also the difference between
the front and rear body heading angles; Lf and Lr represent
the distance from the articulation point to the front and rear
axle, respectively. vf and vr are the speeds of the front and
rear vehicle body.

It is assumed that the vehicle’s speed and acceleration
are small and the slip effect is neglectable. In other words,
the direction of the front (rear) body speed is aligned with
the heading of the front (rear) body. According to [8], the
kinematics of the wheel loader can be described by the
following equations:

ẋf = vfcos (θ + γ) or ẋr = vrcosθ

ẏf = vfsin (θ + γ) or ẏr = vrsinθ

θ̇ =
vfsinγ − Lrγ̇cosγ
Lfcosγ + Lr

(1)

Once the rear body heading angle and the articulated
angle are known, the state of the wheel loader can be fully
described by the position of either the front or rear vehicle
body. Therefore, the state and control vectors can be denoted
as:

x =


xr
yr
θ
γ

 or


xf
yf
θ
γ

 , u =

[
v
γ̇

]
(2)

where the state vector has two representations: one using
front body position and the other using rear body position.
Note that, the front body position can be calculated from the
rear body position and their relative angle with the length of
front and rear bodies, therefore the whole-body dynamics can
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be fully represented by either of the state vectors. To facilitate
calculation, the state representation is selected based on
the moving direction of the wheel loader, which will be
explained in Section III. With states and control inputs in (2),
nonlinear dynamics (1) can be rewritten as ẋ = f(x, u). The
discrete nonlinear state space representation of the system
can be derived using the Euler method:

x(k + 1) = x(k) + Tsf(x(k), u(k)), (3)

where Ts is the step size, and k denotes the step index.

B. Planning using nonlinear MPC

Different from the passenger vehicles driving on the
highway, this paper addresses the case that the wheel loader
is operated in an open and unstructured environment, see
Fig. 1. In the task of excavating and loading, the wheel
loader performs a Y-shaped curve between the loading and
unloading sites [19]. As shown in Fig. 1, the loading cycle
can be decomposed into four steps in the trajectory planning:
1) load material and retract from the pile; 2) approach to the
dump truck and unload material; 3) retract from the truck;
4) approach to the pile.

In this paper, the trajectory planner firstly generates the Y-
shaped trajectory from the loading point to the dump truck
(step 1 and 2), then calculates another trajectory from the
truck to the loading point (step 3 and 4) again to complete
the whole loading cycle. At the loading and unloading points,
the desired position, heading angle, and articulated angle are
determined by the pile and truck locations. In other words,
the initial and desired final states of the wheel loader are
fixed. The trajectory planner needs to calculate a feasible
trajectory without collision considering the kinematics of
the wheel loader. The trajectory planning problem at time
instance k can be formulated into a nonlinear optimization
problem:

min
U

J(x(k), U) =

N−1∑
i=0

(||R u(i|k)||2 + ||Rd ∆u(i|k)||2)

s.t. x(i+ 1|k) = x(i|k) + f (x(i|k), u(i|k))Ts,

x(0|k) = x0, x(N |k) = xf , x(i|k) ∈ X,

u(0|k) = u0, u(N |k) = uf , U ∈ U,

D2
sf −D2(x(i|k)) < 0,

− γmax < γ < γmax,

U = col {u(0|k), . . . , u(N − 1|k)} ,
(4)

where N is the prediction horizon. x(i|k) and u(i|k) denote
the predicted values of the model state and input, respec-
tively, at time k+i based on the information that is available
at time k. ∆u(i|k) = u(i|k)− u(i− 1|k) is included in the
cost function to smooth the trajectory. Since the problem is
formulated to calculate the trajectory from the initial state to
the target state, x(i|k) is not considered in the cost function.
The initial and target states and desired control actions
(x0, xf , u0, uf ) are considered as equality constraints. γmax
is the maximum allowed articulated angle. D2(x(i|k)) is the

distance to the two obstacles: the pile and the dump truck
(see Fig. 1), and D2

sf is the safety distance. The nonlinear
MPC problem finds the optimal control sequence (U ) during
the given time horizon defined by N and Ts. The generated
trajectory contains the desired vehicle state at every time step
along with the associated control command.

In this paper, the trajectory planner is not executed at every
time instant due to limited computational capacity. Since
the application scenario does not consider moving obstacles,
the trajectories are calculated offline with initial and target
states corresponding to the loading and unloading points.
The location of the turning point (see Fig. 1) is determined
directly by the nonlinear MPC planner.

III. TRACKING CONTROL USING LPV-MPC

The LPV-MPC strategy has advantages over conventional
nonlinear MPC and adaptive LTI-MPC. Firstly, the com-
putational complexity is greatly reduced from nonlinear
MPC. By embedding the nonlinear system along the planned
trajectory to an LPV model, the MPC optimization prob-
lem renders a QP problem with linear time-varying system
matrices. Secondly, LPV-MPC outperforms adaptive LTI-
MPC in tracking performance when addressing nonlinear
dynamics. For adaptive LTI-MPC, the linearized model at
the current operating point is used to represent the system
dynamics in the prediction horizon. On the contrary, the
LPV model embeds the nonlinear dynamics into scheduling
parameters, hence the Jacobian matrices along the nominal
trajectory are obtained to represent the nominal linear time-
varying dynamics. In the LPV-MPC tracking control, the
state deviations (tracking error) from nominal trajectory are
constrained in a small bound. At the bounded region close
to the nominal state-control trajectory, the LPV model can
capture the nonlinear dynamics evolving at each step in the
prediction horizon.

A. LPV model embedded from nonlinear model

The nonlinear state space equation represented in (3)
can be linearized around each point along the trajectory,
(x∗(k), u∗(k)), calculated by the planner. Using first-order
Taylor expansion, (3) can be approximated as:

x(k + 1) =x(k) + Ts

[
f(x∗(k), u∗(k))

+
∂f(x∗(k), u∗(k))

∂x
(x(k)− x∗(k))

+
∂f(x∗(k), u∗(k))

∂u
(u(k)− u∗(k))

]
.

(5)

Let xe(k) := x(k)−x∗(k) denote the tracking error at each
time instant and ue(k) := u(k)− u∗(k) denote the tracking
control inputs, the above equation can be written as:

xe(k + 1) =

[
I + Ts

∂f(x∗(k), u∗(k))

∂x

]
xe(k)

+ Ts
∂f(x∗(k), u∗(k))

∂u
ue(k).

(6)
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The Jacobians can be derived with nonlinear terms

∂f

∂x
=


0 0 −vfsin(θ) 0
0 0 vfcos(θ) 0
0 0 0 f4
0 0 0 0

 , (7)

where f4 = vcosγ+Lr γ̇sinγ
Lf cosγ+Lr

+
(Lfsinγ)(vsinγ−Lr γ̇cosγ)

(Lf cosγ+Lr)2
,

∂f

∂u
=


cos(θ) 0
sin(θ) 0
sinγ

Lf cosγ+Lr

−Lrcosγ
Lf cosγ+Lr

0 1

 . (8)

With the nominal trajectory of state xf , yf , θ, γ and control
inputs vf , γ̇, the Jacobian matrix in the prediction horizon
can be easily calculated by plugging in states and control
values. The nonlinear functions in Jacobian matrices are
embedded into scheduling parameters, and the discrete-time
LPV model is thus derived as:

xe(k + 1) = A(x∗(k), u∗(k)) xe(k)
+B(x∗(k), u∗(k)) ue(k)

(9)

where, A(x∗(k), u∗(k)) = I + Ts
∂f
∂x |x∗(k),u∗(k),

B(x∗(k), u∗(k)) = Ts
∂f
∂u |x∗(k),u∗(k).

In the prediction horizon, a sequence of Ak, Bk can be
computed from the planned trajectory, and then the MPC
problem will be formulated to solve the optimal tracking
control action to follow the planned trajectory. For ease
of expression, we simply write scheduling parameters of
nonlinear functions in the Jacobian matrix as ρ(k).

B. LPV-MPC problem formulation

The fundamental idea of LPV-MPC is that, by previewing
the scheduling parameter sequences, the optimal control
sequences to track the nominal state-control trajectory in
a finite horizon can be optimized to minimize the tracking
error. The optimization is conducted repetitively in the re-
ceding horizon, and only the first action at each iteration
is considered in the output optimal sequence. At each time
instance k, the problem of LPV-MPC is expressed in (10):

min
Ue

J(xe(k), Ue, P ) =

min
Ue

||Qfxe(N |k)||2 +

N−1∑
i=0

(||Qxe(i|k)||2 + ||Rue(i|k)||2)

s.t. xe(i+ 1|k) = A(ρ(i|k))xe(i|k) +B(ρ(i|k))ue(i|k),

xe(0|k) = x0 − x∗0, xe(k) ∈ δX,
Ue = col {ue(0|k), . . . , ue(N − 1|k)} , ue(i|k) ∈ δU,
P = col {ρ(0|k), . . . , ρ(N − 1|k)} ,

(10)
where J(xe(k), Ue, P ) is the MPC cost function, it is se-
lected as a quadratic function of tracking error and control
inputs. δU, δX are the set constraints of tracking control
inputs such that the actual control and states still fall in the
set U, X.

In this section, the state vector with the rear vehicle
body coordinate is used during problem formulation. As

mentioned in Section II-A, we can also use the other state
representation with the front body coordinate. In this paper,
the state vector with front body coordinate is used when
driving forward, because the rear vehicle body tends to
follow the desired trajectory if the front body tracking error
is small. On the contrary, if the state vector with the rear
body coordinate is used when driving forward, the tracking
error of the front body is not directly considered by the MPC
controller. Since the front body position is a function of
the rear body position, heading angle, and articulated angle,
the tracking errors can also accumulate and cause a large
tracking error of the front body, which can even make the
system unstable. During application, the state vectors are
selected depending on the driving direction of the wheel
loader [2]. When the wheel loader is moving forward (Step
2 and 4 in Fig. 1), the front body coordinate needs to
be considered in the state vector. Similarly, the rear body
coordinate is considered when the wheel loader is reversing
(Step 1 and 3 in Fig. 1). The tracking control system switches
from one controller to the other at the loading, unloading,
and turning point. This state vector selection method can
greatly improve the tracking performance.

IV. TRAJECTORY PLANNING AND CONTROL SYSTEM

Fig. 3. Overall architecture of the wheel loader trajectory planning and
tracking control system.

Fig. 3 is an overview of the whole trajectory planning and
control system. The nonlinear MPC trajectory planner sends
the desired trajectory points to the LPV-MPC controller who
calculates the reference speed, vref , and the articulated angle
rate γ̇ command signals. The reference speed is sent to the
Stanly speed controller developed based on [20]. Since the
speed controller is out of the scope of this paper, the details
will not be introduced here.

In the real-world application, the states of position (xf , yf )
and (xr, yr) are usually measurable by GPS module, the
heading angle θ measured by inertial measurement unit,
and the articulated angle can be measured by encoders.
Therefore, the deviation of current states and nominal state
x∗ can be directly measured by sensors and the scheduling
parameters are available online.

V. SIMULATION RESULTS AND DISCUSSION

A. High-fidelity simulation environments

The performance of the proposed planning and control
scheme is evaluated in the high-fidelity simulation en-
vironment developed by AGX Dynamics [21] and Mat-
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Fig. 4. A typical loading cycle simulated with AGX Dynamics: (a) Loading
material; (b) Transporting material; (c) Following trajectory; (d) Unloading
material.

lab/Simulink. As shown in Fig. 4, AGX Dynamics is able
to model the wheel loader’s tire/soil interaction considering
soil deformation, and elasticity, slip, and an-isotropic friction
in forward and transverse directions. The wheel loader’s
drive train is simulated by the AGX Drivetrain module with
1D dynamics of engine, clutch, gearbox, and differential.
The nonlinear MPC planner and LPV-MPC controller are
calculated in Matlab/Simulink and communicate control in-
puts and states with AGX Dynamics. YALMIP [22] is used
to operate and solve the optimization problem from LPV-
MPC, adaptive LTI-MPC, and nonlinear MPC. The solver
Sedumi [23] is used to solve the semi-definite programming
of LTI-MPC and LPV-MPC. The solver fmincon is used to
solve the nonlinear programming. We perform the simulation
on a Dell Precision 7510 with Intel Core i7-6820HQ CPU
@2.70GHz x8, and the simulation is conducted in high-
fidelity environment with real-time feasibility. The MPC
controllers are computed at 5 Hz with a prediction horizon
of 10 steps.

B. Simulation results

TABLE I
NONLINEAR MPC PLANNER DESIGN PARAMETERS.

Parameter Value
R diag(1, 1)
Rd 8 ∗ diag(1, 3)
γmax 0.40 rad
Ts 0.2 s
N 100

To compare the performance of the nonlinear MPC, LPV-
MPC, and adaptive LTI-MPC controllers, we have conducted
the simulation of one whole loading cycle shown in Fig. 1.
The wheel loader first moves from the loading point to
the unloading point at the dump truck, and then returns
back to the loading point. The trajectory is generated by
the nonlinear MPC planner offline with given loading and
unloading points. The dump truck and material pile are
approximated and considered as rectangular obstacles by the
nonlinear MPC planner. The main parameters are shown in
Table I.

TABLE II
MPC CONTROLLER DESIGN PARAMETERS.

Parameter Value
R diag(0.1, 0.5)
Q 8 ∗ diag(4, 4, 3, 2)
Qf 10 ∗Q
Ts 0.2 s
N 10

1) Tracking performance: Once the offline trajectory is
obtained with position, heading, and articulated angle infor-
mation, the wheel loader can be controlled by the three MPC
controllers to track the trajectory. To make a fair comparison,
all the controllers share the same design parameters, as
shown in Table II. To demonstrate the stability of the
controller, we intentionally added 0.5m lateral error at the
beginning of the simulation. Fig. 5 shows the rear vehicle
body coordinates (xr, yr) provided by the planned trajec-
tory along with the vehicle response of the three different
MPC approaches. Subplot (a) shows the actual trajectories
starting from the same initial state, where the wheel loader
locates around the pile point, both the heading angle and
the articulated angle are 0. Subplot (b) shows the actual
returning trajectory from the truck to the pile. Subplot (c)
shows the absolute trajectory tracking error. The tracking
error is calculated by the distance of the wheel loader’s
current position to the nearest point on the trajectory.

The nonlinear MPC and LPV-MPC are able to accurately
follow the desired trajectory during the whole loading cycle
in the high-fidelity environment and have similar perfor-
mance. The LTI-MPC has the worst tracking performance
since it fails to accurately capture the kinematics of the wheel
loader especially when the vehicle heading and articulated
angle are changing quickly. The tracking error leads the LTI
models to deviate from the actual model along the trajectory,
which deteriorates the tracking performance. On the contrary,
the LPV model includes nominal nonlinear dynamics in
the prediction and produces more accurate tracking than
the adaptive LTI-MPC. Table III lists the mean of absolute
tracking errors of the three controllers during the whole
loading cycle.

TABLE III
TRACKING ERROR COMPARISON

NL-MPC LPV-MPC LTI-MPC
Mean absolute

tracking error (m) 0.103 0.120 0.246

For a wheel loader, the coordinate of the front or rear
vehicle body cannot fully define the pose of the vehicle.
Heading and articulated angles also need to be considered
while evaluating the tracking performance. When the wheel
loader is away from the loading or unloading points, the
heading and articulated angles are less important as long
as the vehicle’s position can track the desired path without
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Fig. 5. Wheel loader position tracking performance of NL-MPC, LPV-MPC, and LTI-MPC controllers.

collision with obstacles. However, tracking the planned head-
ing and articulated angles helps controllers to manipulate the
vehicle’s position closer to the desired path. When the wheel
loader is at the loading or unloading point, it is expected that
the heading and articulated angles can match the desired
values closely, since these two angles greatly affect the
wheel loader’s loading and unloading maneuvers. Fig. 6
illustrates the desired and actual heading and articulated
angles during simulation. The nonlinear MPC and LPV-MPC
generally have better tracking performance than the LTI-
MPC, especially at the loading and unloading points (at time
= 20s and 40s).
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Fig. 6. Wheel loader heading angle and articulated angle tracking
performance of NL-MPC, LPV-MPC, and LTI-MPC controllers.

Fig. 7 plots the control actions calculated by the LPV-
MPC controller and the corresponding response measured
from the wheel loader AGX model. The speed response has
a larger delay and tracking error than the articulated angle
response, since we are not considering the speed as the state
in the vehicle model. The performance of the speed controller
is out of the scope of this paper, so will not be discussed
here. However, it needs to be noted that the tracking error

of the speed controller acts as one of the disturbances of the
whole system and greatly affects the performance of MPC
controllers used for trajectory tracking.
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Fig. 7. Control actions of LPV-MPC controller.

2) Computational burden: With the tracking performance
comparison in mind, we further compare the computational
burdens of three MPC strategies. The computational burdens
are plotted in Fig. 8 with average computational duration
and variances. It is obvious that the computational duration
of nonlinear MPC grows much faster than the adaptive LTI-
MPC and LPV-MPC with increasing prediction horizons.
However, the LPV-MPC has almost the same computational
duration as LTI-MPC. This result indicates that the LPV-
MPC renders similar computational complexity with LTI-
MPC, and much less complexity than nonlinear MPC. The
reason is that both the LPV-MPC and LTI-MPC formulate
quadratic programs in each step, but the nonlinear MPC has
to solve the nonlinear programming.

Combining the results of tracking performance and com-
putational burden, the LPV-MPC strategy produces close
tracking performance with nonlinear MPC but greatly re-
duces the computational complexity. Comparing with the
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adaptive LTI-MPC strategy, the LPV-MPC has a similar com-
putational burden but produces much more accurate tracking
performance. It needs to be noted that LPV-MPC cannot be
easily used for planning, because the LPV-MPC algorithm
requires the knowledge of the scheduling parameters within
the prediction horizon which is not available before planning.
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Fig. 8. Computation effort comparison.

VI. CONCLUSIONS AND FUTURE WORK
This paper presents a systematic framework of offline

high-performance planning and online tracking by LPV-
MPC strategy. With given initial and target final states, the
trajectory planning is conducted by nonlinear MPC with
nonlinear models. The proposed LPV-MPC is used to online
track the planned trajectory. In the high-fidelity simulation,
the LPV-MPC is demonstrated to perform much better than
LTI-MPC in tracking performance and faster computation
than nonlinear MPC while maintaining good tracking per-
formance.

In the high-fidelity simulation, the wheel loader is subject
to disturbance from frictions between wheels and uneven,
uncertain ground. However, the robustness against these
disturbances and model uncertainty by the LPV-MPC is not
analyzed. The future work is to develop tools for robustness
analysis and to develop a robust LPV-MPC strategy to
reject external disturbance and achieve guaranteed robustness
against model uncertainty. The current implementation does
not consider the full dynamics of the wheel loader, so
another future work is to design systems considering the
full dynamics of the vehicle including the case when the
dynamics are changing due the load being carried by the
wheel loader.
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