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Abstract— This paper presents a multi-modal model-based
reinforcement learning (MBRL) approach to the excavation of
fragmented rocks, which are very challenging to model due to
their highly variable sizes and geometries, and visual occlusions.
A multi-modal recurrent neural network (RNN) learns the
dynamics of bucket-terrain interaction from a small physical
dataset, with a discrete set of motion primitives encoded with
domain knowledge as the action space. Then a model predictive
controller (MPC) tracks a global reference path using multi-
modal feedback. We show that our RNN-based dynamics
function achieves lower prediction errors compared to a feed-
forward neural network baseline, and the MPC is able to
significantly outperform manually designed strategies on such
a challenging task.

I. INTRODUCTION

Excavators are versatile earth-moving machines that are

widely used in mining, agriculture, and construction. Exca-

vator operation requires highly skilled operators and often-

times happens in hazardous environments that could cause

injuries [1]. This has led to an increasing amount of effort in

excavation automation [2], but one of the key challenges of

excavation automation is that it is impossible to model the

machine-earth interaction accurately [2], especially for com-

plex, non-homogeneous terrains such as fragmented rocks.

In this work, we focus on the problem of excavation

of fragmented rocks, and a real-world example is shown

in Fig. 1. Compared to homogeneous materials such as sand,

the interaction between an excavator bucket and a pile of

fragmented rocks is very challenging to model because the

rocks are highly variable in sizes and shapes, and they are

only visible from the surface. When following an arbitrary

digging trajectory, an excavator bucket tends to get stuck

because jamming among the rocks occurs frequently and

generates large interaction forces. When human operators

excavate fragment rocks, they need to find gaps between

rocks to insert the bucket and continuously adjust and react

to the change in the visual scene, interaction forces, and

even engine noises of the machines. Another strategy they

use when the bucket gets stuck is to wiggle the bucket

to disturb and loosen up the rocks. However, this type

of strategy is challenging to discover automatically by a

planner. Previous works have adopted admittance control [3,

4] and trajectory learning [5] for wheel loaders, but can only

handle limited scenarios. Recently, model-free reinforcement
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Fig. 1. Fragmented rocks excavation using an excavator.

learning approaches have been applied to finding excavation

policies for wheel loaders [6] and excavators [7], but the

training is done in simulation due to the requirement of

large data. The bottleneck here is that accurate and efficient

simulators are currently not available for complex terrains

such as fragmented rocks.

We aim to address these challenges associated with ex-

cavation of fragmented rocks, including the difficulty in

modeling terrain-bucket interactions and acquiring a large

dataset, and the requirement for dexterous excavation skills.

Towards equipping autonomous excavators with similar ca-

pabilities as humans, we propose a multi-modal model-based

reinforcement learning (MBRL) approach to fragmented

rocks excavation, that enables data-efficient learning using a

small dataset of physical data and significantly outperforms

manually tuned excavation strategies.

In our method, the excavation domain knowledge is en-

coded into a discrete set of primitive motions, and a recurrent

neural network (RNN) learns the dynamics of bucket-terrain

interaction with visual, tactile, and proprioceptive modali-

ties using data collected in physical experiments. During

online excavation, a global reference excavation path is

given, which is tracked with a model predictive controller

(MPC). The MPC follows the path whenever possible to

maximize the excavated mass, and deviates from the path

to avoid excessive contact forces that lead to jamming. We

show that our RNN-based model significantly outperforms

a feed-forward neural network baseline. We demonstrate

from extensive experiments that our system is capable of

completing excavations with high success rates of avoiding

jamming, and outperforming manually designed strategies in

tracking error and excavated mass.

2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 23-27, 2022, Kyoto, Japan

978-1-6654-7927-1/22/$31.00 ©2022 IEEE 6523

20
22

 IE
EE

/R
SJ

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 In

te
lli

ge
nt

 R
ob

ot
s a

nd
 S

ys
te

m
s (

IR
O

S)
 |

 9
78

-1
-6

65
4-

79
27

-1
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IR

O
S4

76
12

.2
02

2.
99

81
53

7

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on March 07,2023 at 05:43:38 UTC from IEEE Xplore.  Restrictions apply. 



II. LITERATURE REVIEW

A. Excavation Automation

There has been plenty of work in control [8, 9, 10],

trajectory planning [11, 12], and task-level planning [13, 14,

15] for autonomous excavators and earth-moving machines.

However, the majority of these works focus on excavation

of homogeneous materials, such as sand and soil, and can

not be directly applied to fragmented rocks. Here we review

works on the excavation of fragmented rocks.

Control-based methods have been proposed for fragmented

rocks excavation. Dobson et al. adopt an admittance control

framework for fragmented rocks excavation by wheel load-

ers [3]. Fernando et al. extend this work by adapting the ad-

mittance control parameters online with iterative learning [4].

Compared to control-based approaches, our method performs

local planning that gives rise to more versatile and optimal

behaviors.

Dadhich et al. adopt imitation learning for wheel load-

ers by simply performing regression on expert demonstra-

tions [5], but this approach could only handle simple scenar-

ios. Model-free [6, 7] and model-based [16] RL approaches

have been adopted in this problem domain as well, but the

learning is performed in simulation, which deviates from

reality. For example, when applying trajectories planned with

a planner based on simulation data, failures due to jamming

have been reported [16]. Our proposed method enables data-

efficient learning from physical data and incorporates multi-

modal sensory information to avoid jamming.

B. Contact-rich Manipulation with Multi-modal Observa-

tions

Humans are capable of seamlessly fusing multiple sensory

modalities including visual, tactile, and proprioceptive in-

formation while performing contact-rich manipulation tasks,

and it is a natural strategy for robots as well because each of

these modalities is able to provide unique information and

complement each other. In the recent years, it has become

increasingly common to consider multi-modal observations

for contact-rich manipulation tasks. Kappler et al. propose

a method that would learn a set of manipulation skill with

multi-modal sensory input, formulated as dynamic motion

primitives, and store them in a manipulation graph used

for planning [17]. Fazeli et al. demonstrate a robot that

leverages hierarchical Bayesian representation with multi-

sensory observations to play the game of Jenga. End-to-

end learning has also been adopted [18], and Lee et al.

utilize auxiliary goals to learn a latent state representation

that fuses all modalities [19]. In addition, imitation learn-

ing [20, 21] and inverse RL [22] approaches have also

been adopted for contact-rich manipulation tasks with multi-

modal observations. However, the majority of these methods

focus on relatively simple tasks such as peg-in-hole, Jenga,

and wiping, while we tackle a very challenging problem of

fragmented rocks excavation.

C. Model-based Reinforcement Learning

MBRL approaches have been surveyed and compared

recently in a survey [23] and a benchmark [24]. Compared to

model-free methods, a model-based approach is more data-

efficient and makes it possible to directly learn from real-

world data, which is usually expensive to collect for robotics

tasks. Compared to most of the MBRL methods for control

and planning [24], our method adopts a discrete action space

with primitives designed with domain knowledge, and uses

discrete planning methods for the MPC.

III. PROBLEM DEFINITION

In the real world, e.g. construction sites, automation of

excavators aims to maximize the amount of materials ex-

cavated per unit time. In the case of fragmented rocks, the

excavator would execute a trajectory that allows the digging

bucket to collect as much material as possible, while avoiding

getting stuck since that would require the excavator to abort

the current trajectory. In this work, we simplify the problem

by giving a reference path that is designed to excavate a

large volume if followed precisely, and aim to plan actions

to follow the path, using multi-modal feedback. Ideally, the

executed trajectory would follow the reference path when

possible, but also deviate from the path to avoid getting stuck

due to large contact forces.

We use a 7-DOF Franka Panda arm and irregular wooden

blocks to emulate an excavation scene of fragmented rocks.

The excavation setup and the frame definition are in shown

in Fig. 2, where we use an overhead RGB camera and mount

a digging bucket to the robot arm end-effector. We note that

although as explained in the next paragraph, the emulated

excavator has 4 DOFs, the same as an actual excavator, the

geometries of the configuration space are different. However,

this would not affect the generality of the proposed method

itself. We represent the state of the robot and the environment

at time t as st ∈ S = P×R
3×I, which includes the bucket

pose, the contact force at the bucket and an RGB image

from the overhead camera. Since an excavator arm only has

4 degrees of freedom, we restrict the robot’s bucket pose to

only the 3 translations and rotation around the world y-axis,

i.e. P = R
3 × SO(2). For notation convenience, we also

represent the state without the visual information at time t

as qt ∈ Q = P × R
3.

When an excavator bucket encounters large resistive forces

from the substrate, a human operator often adopts a strategy

to wiggle the buckle to disturb and loosen the rocks. We

take advantage of such domain knowledge and instead of

using continuous controls as the action space, we define a

set of 9 discrete action primitives A as the action space. The

primitives include Cartesian movements and rotation of the

bucket, and wiggling of the bucket:

• Cartesian movement of the bucket in both the positive

and negative x-, y-, and z- directions in the world frame.

Each movement is 1.5 cm in length with orientation

fixed, executed at 1 cm/s.

• Positive and negative bucket orientation change in the

y-axis for 0.1 rad (5.7◦) at 1 rad/s.
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• Wiggling of the bucket in the x-axis for 4 seconds,

where the displacements follow a sine wave with mag-

nitude 2 cm and frequency 1 Hz.

We empirically chose these actions and their parameters for

our excavation scene. In the future, it would be beneficial to

investigate how to systematically choose the action parame-

ters based on the size of the fragmented rocks. To execute

an action ai, a joint-space trajectory is first generated using

inverse kinematics (IK) and sent to the joint impedance con-

troller of the Franka arm with impedance set at 100 Nm/rad.

Throughout this project, we follow the common practice

in the excavation literature and divide a reference path into

4 phase: digging, dragging, closing, and lifting [16, 25]. We

assume that the bucket goes toward the base of the robot, and

to simplify the problem without the loss of generality, we

only consider trajectory in the x-z plane of the robot. With

these assumptions, the reference path is defined as fref :
[0, 1] → SE(2), an example is shown in Fig. 3. Simply

tracking such an trajectory on fragmented rocks often results

in the bucket getting jammed. In our experiment setup, due

to the use of a safe collaborative robot, the robot controller

would take over and issue an halt to the robot when a large

contact force is detected, which we use as a criterion for

whether the robot has jammed or not throughout the paper.

RGB 
Camera

y
x

z

(a) Excavation setup (b) Excavation scene

Fig. 2. Excavation setup with the world frame labeled and the excavation
scene with scale.

Penetration
Dragging

Closing

Lifting

Fig. 3. Reference digging trajectory.

Throughout the paper, due to the use of a discrete action

space, a trajectory of length T is defined as T actions, along

with the T + 1 states with or without visual information

before and after executing the action, and we ignore the states

of the robot and the environment while the primitive action

is being executed.

IV. DYNAMICS LEARNING

We adopt a MBRL formulation, where we first collect a

dataset of trajectories offline on the physical setup, train a

dynamics function for a sequence of actions, and use an MPC

to track a reference path online. We shall discuss dynamics

learning in this section, and MPC in Section V.

Since only the surface of a pile of rocks is visible, we

hypothesize that in order to accurately predict the excavation

dynamics, a robot needs not only the current state of the

system, but also state history, which is shown to be true

through experiments in Section VI. Therefore, the goal of

dynamics learning is to, at time t, predict a horizon k of

future states without visual information q̃t = [qt+1, . . . , qt+k]
given a history of states of length l: s̄t = [st−l+1, . . . , st],
and future actions ãt = [at, . . . , at+k−1], where each ai is

an integer. Since this is a sequence-to-sequence prediction

task, we propose to use an RNN to learn such a dynamics

function, which encodes visual, proprioceptive, and tactile

modalities.

The entire architecture is shown in Fig. 4, where the

sizes of the fully-connected layers are annotated. Each of

the three modalities in each state is first encoded into a

single latent feature. The RGB image is encoded with a

ResNet50 convolutional neural network (CNN) model [26].

The bucket pose and contact wrench are encoded with

separate fully-connected layers. These three modalities of

encoded features are then concatenated into a single vector

that passes through another fully-connected layer to a feature

vector z. A sequence of length l of z vectors is then input

into the RNN encoder.

Actions are one-hot encoded and they pass through a

fully-connected layer before inputting into the decoder. The

dimension of the one-hot encoding is 10, which is the size of

the action space plus a null action. Separate fully-connected

layers are used to obtain the pose and force from the decoder

latent state. We apply batch normalization and the leaky

ReLU activation function [27] to each fully-connected layer.

In addition, We use a gated recurrent unit (GRU) [28]

RNN model with additive attention [29]. Compared to a

typical sequence-to-sequence machine translation, the main

difference is that we have control inputs in the RNN decoder.

We collect training data by executing random and man-

ually designed trajectories while recording visual, proprio-

ceptive, and tactile data, detailed in Section VI-A. The tra-

jectories are post-processed into training data points, where

the i-th data point is denoted as (s̄
(i)
t , ã

(i)
t , q̃

(i)
t ), where q̃

(i)
t

is the prediction target. In addition, we pad the start of each

trajectory with l−1 null actions and copies of the first state in

the trajectory. Let the dynamics function be q̂
(i)
t = f(s̄t, ãt),

where q̂
(i)
t is the predicted future states, then for N data

points, we minimize the following loss:

N−1
∑

i=0

k−1
∑

j=0

∥

∥

∥
cT (q̃

(i)
t [j]− q̂

(i)
t [j])

∥

∥

∥

2

2
, (1)

where c is a weight vector, and we give the bucket pose a

weight of 10 and the wrench a weight of 1 .
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RGB Image

CNN

Pose

Force

GRU 
Encoder

Force

𝑧
[4 x 512]

[3 x 512]

[3076 x 1024]

Action

[1024 x 4]

GRU 
Decoder

Pose

[1024 x 3][10 x 1024]

Attention

Fig. 4. Dynamics learning architecture.

V. PLANNING

We adopt the MPC scheme to reactively plan actions

to track a reference path, where the planner repeatedly

plan a trajectory of length k based on a cost function and

execute the first action. This allows the planner to adjust

to feedback when applying each action and be robust to

dynamics prediction error. The cost function we aim to

minimize is a weighted sum of three terms:

J(ãt, q̃t) =

w1 · gprog(fref , q̃t) + w2 · gtrack(fref , q̃t) + w3 · gcol(q̃t),
(2)

where gprog measures the progress along the reference

path, gtrack weighs the tracking performance of the planned

trajectory, gcol calculates the penalty given to large contact

forces. We set w1, w2, and w3 to 0.8, -1.05, and -1/1500,

respectively, which are tuned empirically. The goal is to

maximize gprog while minimizing gtrack and gcol. The exact

definitions of these 3 terms are introduced in Section V-B.

The planning problem is then defined as:

ãt J(ãt, q̃t)

s.t. q̃t[·] ∈ Q, ãt[·] ∈ A,

q̃t = f(s̄t, ãt),

(3)

where Q is the space of feasible robot configurations and

f(·, ·) is the dynamics function.

A. Planning Algorithm

Due to the discrete nature of the actions, we consider 3

well-known methods for discrete planning, including brute-

force search, random shooting (RS), and Monte Carlo tree

search (MCTS). In brute-force search, each possible trajec-

tory is evaluated and the optimal trajectory is selected. How-

ever, this method is limited by the planning horizon since the

number of possible trajectories increases exponentially with

the prediction horizon. For RS, a fixed number of random

trajectories are sampled and evaluated. This number is the

computation budget. MCTS is a heuristic search algorithm,

where a search tree is iteratively expanded by balancing

exploration and exploitation while each node is assigned a

utility that is the average of the rewards, i.e. negative costs,

of randomly sampled future trajectories starting from this

node. In our implementation, a fixed number of random

trajectories are evaluated at each expansion step of MCTS.

The computation budget for MCTS equals this fixed number

multiplied by the total number of expansion steps.

B. Excavation Specific Details

As defined earlier, qt contains both the bucket pose and

contact force, which we denote as p = [x, y, z, α] and

F = [Fx, Fy, Fz]. For a bucket pose p, we evaluate its

progress along the reference path by first finding the closest

point pcloset on the path in terms of Euclidean distance,

ignoring the angular component. Then the progress ∈ [0, 1] is

calculated as the path length, considering only the position,

from the start of the path to pcloset divided by the entire

length of the path. gprog simply averages the progresses for

the k future bucket poses.

To calculate gtrack, for a pose p, we alternatively calculate

its distance to the reference path by calculating the Euclidean

distance between p and pclosest including the angle, where

the position and angle use meter and radian as units, and

the angles are weighted by 0.15. gtrack could be defined as

the average of the distances of the k future poses. However,

due to the granularity of the discrete actions, we allow small

deviations from the reference trajectory and use the average

of the adjusted distances, where each adjusted distance scales

the portion of the original distance that is below a threshold

of 0.015 by 0.2.

gcol is used to penalize large contact forces, and is an

average of k future contact force penalties, where for each

contact force, zero penalty is given when the contact force

is below a threshold of 17.5 N, and is penalized with a

coefficient of 1 over the threshold.

Finally, since large contact forces during lifting rarely

occur, the reference path does not contain the lifting phase.

When the robot finishes closing, we simply execute lifting by

sending open-loop commands. We also note that the param-

eters described in this section are empirically determined.
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VI. RESULTS

A. Data Collection

One goal of data collection is to obtain data that cover a

wide distribution. To do this, we adopt 3 strategies, including

applying random actions, following scripted policies, and

following scripted policies with stochasticity.

For random actions, the robot randomly executes the

9 actions with equal probability, with boundaries on the

position and orientation of the digging bucket to ensure

safety. We consider 3 types of scripted policies. In the first

policy, denoted as "Follow", the robot executes the action

that minimizes its distance from a moving reference point on

the reference path, where the distance is defined as that of

gtrack without scaling in V-B. In particular, once the distance

in the x position between the bucket and the reference point

is smaller than 0.04, the reference point moves along the

trajectory for 2 cm. Therefore, this policy does not consider

the wiggling action. The second policy (denoted as "Closed-

loop") is the same as Follow, but wiggles every 2 actions. The

third policy (denoted as "Open-loop") is an open-loop version

of Closed-loop, where the entire action sequence along the

path is first planned in a similar fashion by assuming perfect

execution of the actions, also with wiggling every 2 other

actions.

To introduce randomness into the scripted policies, we use

a modified version of Follow. Instead of picking actions in a

deterministic way, we assign nonzero probabilities to select

each of the actions and bias the action that would minimize

the distance to the reference point.

Using these strategies, we collect a total of about 300

trajectories, and split them into training, validation, and

testing data with a ratio of 8:1:1.

1

3

5

𝑙 𝑘 1 2 3 4 5

FFRNN

1 2 3 4 5

0.015

0.035

0.020

0.025

0.030

7

Fig. 5. Loss of RNN and FF with different history lengths and prediction
horizons on the testing data. [Best viewed in color.]

B. Dynamics Learning

We compare our method (denoted as RNN) against a

feed-forward neural network baseline (denoted as FF). FF

also uses the same multi-modal encoding layers as RNN

to obtain the history features. The model concatenates the

history features and the future controls, and predict the next

k states all at once. Note that we cannot adopt the scheme

where we predict only the next state, move the window of

history forward one time step and predict again such that

a variable number of future states can be predicted. This is

because we would not be able predict the future images. For

the architecture, we use a total of 5 fully-connected layers

of sizes (l+k)×512, (l+k)×1024, (l+k)×512, k×512,

and k × 64. We also use batch normalization and the leaky

ReLU activation function on each layer.

For RNN, we train a model with history length l = 7 and

prediction horizon k = 7. For the FF baseline, we train three

models with the same prediction horizon of 5, and history

lengths of 1, 3, and 5. We do not train FF with l or k =

7 due to neural network model size and computer hardware

limits.

One difficulty in predicting a horizon of future states with

RNN is that errors in predictions accumulate and could blow

up. This is a problem for the initial stage of training where

the 1-step prediction error is big. Therefore, we perform

RNN training in 2 stages, similar to the strategy used by [30].

In stage 1, we train the entire pipeline with a prediction

horizon length of 1. In stage 2, we train with the full horizon

length k. For both FF training and stage 1 of RNN training,

we set the initial learning rate to 1e-4, with an exponential

decay rate of 0.7 every 10 epochs. We train with a total of

200 epochs with the Adam optimizer and batch size of 16,

and set gradient clipping at 1. For stage 2 of RNN training,

we use the same settings, except for the initial learning rate

of 1e-5 and a total of 100 epochs.

For our method, and both baselines, we compare the

loss on the testing dataset, for different history length and

prediction horizon, shown in Fig. 5. The trend in the loss on

the rows and columns of the grid shows that a longer history

length leads to a smaller prediction error and prediction

errors increase with prediction horizon, for both RNN and

FF. In addition, RNN outperforms FF consistently, while

using fewer neural network parameters (excluding the multi-

modal encoding layers, RNN is approximately 1/3 of the

size of FF with l = 1). To give a sense of the scale of the

prediction error, an average prediction error of 4.5 mm in

position, 0.18 rad in angle, and 0.10 N in force is equal to

a loss of about 0.3. Finally, we demonstrate the dynamics

prediction and its quality along a trajectory in Fig. 6.

1) Ablation studies: In the ablation studies, we intend

to answer whether the visual and tactile modalities help

improve state prediction. We also look into whether we

could use pretrained visual features on other tasks to improve

training efficiency. We train separate RNN models for each

of the methods listed in Table I for l = k = 7, and

report the loss on the testing dataset. For pretrained visual

features, we use pretrained RNN weights on the ImageNet

dataset [31]. The results show that the visual features learned

on the ImageNet are not suitable for this task. At the same

time, each modality decreases the loss, although it seems

that the vision plays a smaller role than tactile information.

This could indicate that the surface of the object pile is less

useful. However, we suspect that this is more likely due to the

fact that end-to-end learning does not lead to the best visual

features, and we would like to pretrain the visual features

with auxiliary tasks designed for excavation in the future.
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Fig. 6. Four snapshots of position prediction errors along a testing trajectory with RNN. In every picture of the top row, the brown line represents the
x-z position of the entire trajectory, with future trajectory shown with transparency. The blue crosses are the ground-truth positions for the 7 future states.
The colored line are the 7 positions predicted by the learned dynamics, with colors representing position error. The bottom row contains the corresponding
excavation scene. [Best viewed in color.]

Step 1 Step 11 Step 21 Step 32

Step 1 Step 8 Step 16 Step 23

Fig. 7. The top and bottom rows show two example trajectories executed with MCTS, k = 5, tracking the deep trajectory. In the top row, a few objects
are successfully excavated, while the excavation is aborted due to large contact forces in the bottom row.

TABLE I

DYNAMICS ABLATION STUDIES

Method Testing Loss

all modalities 0.02191

all modalities w/ pretrained CNN 0.02606

no vision 0.02217

no tactile 0.02356

no vision nor tactile 0.02370

Fig. 8. Two cases that led to jamming. On the left, big blocks prevented
penetration. On the right, the digging bucket teeth caught a red concave
object. [Best viewed in color.]

C. Excavation Experiments

For the excavation experiments, in addition to evaluating

the performance of the 3 different planners, we look into

whether using wiggling helps excavation, and whether using

a longer prediction horizon improves planner performance

despite the larger errors in prediction. We compare the

planners against 3 baselines, Follow, Closed-loop, and Open-

loop, defined in Section VI-A. We use three previously

unseen trajectories to evaluate the methods. Relative to the

surface of the fragmented rocks pile, the trajectories are shal-

low, medium, and deep in depth, with the deepest trajectory

about 8-10 cm beneath the surface during the dragging phase.

We repeat 10 trials on each of the 3 trajectories, and we

manually randomize and reset the object pile after each trial.

If the robot gets jammed during any of the trials, we abort the

current trial. Throughout the experiments in this subsection,

we use the same dynamics model architecture with the best

performance, which is RNN with all modalities. Due to the

small size of the dataset, we train a final model on both

the training and testing data, and stop training when the

validation error is minimized. We use a history length l = 7

for all the experiments.

We use 4 metrics to compare the performance of different

planners, which are the number of trajectories that lead to

jamming, the average position and angle tracking errors for

the trajectories that do not jam, and the amount of material

removed per action. The first three metrics are directly related

to the terms in the cost function for tracking error and

large contact forces. Since the ultimate goal in the real
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TABLE II

EXCAVATION EXPERIMENTS FOR SHALLOW/MEDIUM/DEEP TRAJECTORIES

Method % of Jam Pos. Err. (cm) Ang. Err. (◦) Weight per Action (g)

Follow 50% / 60% / 100% 0.61 / 0.64 / - 2.2 / 2.2 / - 1.00 / 2.10 / 0.0
Closed-loop 10% / 20% / 60% 1.5 / 1.3 / 1.4 9.1 / 8.5 / 7.7 0.202 / 0.688 / 1.55
Open-loop 10% / 10% / 30% 1.2 / 1.4 / 2.0 5.4 / 6.4 / 6.5 0.341 / 0.669 / 1.40

Brute-force, k = 3 0% / 0% / 20% 1.6 / 2.0 / 1.6 2.9 / 2.8 / 2.5 0.971 / 1.35 / 1.47
Brute-force, k = 5 10% / 10% / 20% 1.6 / 1.7 / 2.2 2.1 / 2.4 / 2.7 0.954 / 2.37 / 3.13

RS, k = 5 30% / 10% / 30% 1.5 / 2.0 / 2.4 2.3 / 2.6 / 3.1 1.67 / 2.29 / 2.53
RS, k = 7 10% / 10% / 10% 1.4 / 1.9 / 2.8 2.9 / 3.2 / 3.5 1.65 / 2.64 / 2.90

MCTS, k = 5 10% / 10% / 20% 1.4 / 1.8 / 1.9 3.2 / 3.1 / 2.7 1.34 / 2.23 / 2.77
MCTS, k = 7 40% / 10% / 20% 1.2 / 2.3 / 2.0 3.3 / 3.3 / 3.2 1.84 / 1.45 / 3.11

world is to maximize the amount of materials removed per

excavator action, we also use the weight per action metric.

For the trajectories that lead to jamming, we simply count

the actions that have been executed before jamming happens,

and consider the excavated weight as 0. The results are

shown in Table II. We experiment with prediction horizons

of 3 and 5 for brute-force, and do not experiment with 7

due to computational tractability. For RS and MCTS, we

experiment with prediction horizons of 5 and 7, all with a

computation budget of 20,000 simulations. We show in Fig. 7

two excavation trajectories, one with successfully excavated

objects and one that jammed, by MCTS with k = 5 tracking

the deep trajectory.

Comparing Follow against the other two baselines, it is

obvious that the use of wiggling helps reduce large contact

forces, without which excavation always fails for a deep

trajectory. All of our planners, with different settings, are

able to significantly outperform the baselines. The results for

brute-force demonstrate that using a prediction horizon of 5

instead of 3 improves excavation performance. Using an even

longer prediction horizon of 7 shows different results for RS

and MCTS, where RS is improved and MCTS is slightly

worse. Overall, brute-force with k = 5, RS with k = 7, and

MCTS with k = 5 achieve the best performance, but with

brute-force using a greater amount of computation (59,049

compared to 20,000 simulations). We expected MCTS to

outperform RS, a simple strategy, but we do not see such

results from the experiments. We think that for the task of

excavation, during the search in MCTS, the node with the

lowest average cost might not be along the best trajectory.

For example, an action of going down when the contact force

is large, could lead to large costs on average for all possible

future trajectories due to penalty for contact forces. However,

the optimal trajectory might require the action of going down

first.

One advantage of the method is data efficiency, where us-

ing only a total of about 300 trajectories result in policies that

perform significant better than manually designed strategies.

The data efficiency of method mainly comes from a model-

based formulation and a well-designed action set of motion

primitives where we encode domain knowledge.

We show two common cases that lead to jamming

in Fig. 8, including a big object on the way of penetration

and a concave object that catches the digging bucket teeth

and results in excessive contact forces. In the first case, our

planner is unable to plan a local trajectory to get around

it, due to limitation in the planning horizon as a longer

planning horizon leads to increasingly inaccurate dynamics

predictions. We believe that, in this case, a re-planning of the

global reference path is necessary and we plan to investigate

this in the future.

VII. CONCLUSION

In conclusion, we propose a multi-modal MBRL approach

for the task of fragmented rocks excavation. With a discrete

action space of excavation primitives encoded with domain

knowledge and the multi-modal RNN-based dynamics ar-

chitecture, we show that we can learn the dynamics function

from a small real-world dataset reasonably well to be used

in planning. In addition, our MPC is able to significantly

outperform manually designed strategies for tracking a global

reference path, while brute-force, RS, and MCTS do not

differ significantly in performance from each other.

In the future, we would like to extend our work to combine

the re-planning of global reference path when our local

planner is struggling. The results also show that the visual

features improve prediction accuracy marginally, and we

would like to investigate better learning of the visual features,

possibly by pretraining them with auxiliary tasks. Finally, we

would like to implement our method on real excavators. One

foreseeable challenge is the amount of training data needed

compared to a controlled experiment in this paper, and we

intend to collaborate with industrial partners to scale up data

collection.
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