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Abstract— Automated excavation is promising to improve the
safety and efficiency of excavators, and trajectory planning
is one of the most important techniques. In this paper, we
propose a two-stage method that integrates data-driven im-
itation learning and model-based trajectory optimization to
generate optimal trajectories for autonomous excavators. We
firstly train a deep neural network using demonstration data
to mimic the operation patterns of human experts under various
terrain states including their geometry shape and material type.
Then, we use a stochastic trajectory optimization method to
improve the trajectory generated by the neural network to
guarantee kinematics feasibility, improve smoothness, satisfy
hard constraints, and achieve desired excavation volumes. We
test the proposed algorithm on a Franka robot arm equipped
with a bucket end-effector. We further evaluate our method on
different material types, such as sand and rigid blocks. The ex-
perimental results show that the proposed two-stage algorithm
by combining expert knowledge and model optimization can
increase the excavation weights by up to 24.77% meanwhile
with low variance.

I. INTRODUCTION

Excavators have been widely used in the construction and
mining industries. Many excavation tasks are challenging and
often need to be conducted under hazardous environments,
making it hard for humans to safely and efficiently operate
the excavators. With the rise of sensor and computation
techniques, autonomous excavators [1] have received more
and more attention due to the potential to guarantee safety,
increase efficiency, and reduce cost [2] [3] [4]. Technically,
there are many aspects, which should be considered in order
to develop autonomous excavators: perception, planning,
control, system integration, etc. As one of the most important
components, excavation trajectory planning is considered in
this paper.

In general, there are two approaches to generate trajec-
tories for autonomous excavators: 1) model-based trajectory
planning, and 2) learning-based trajectory planning. Model-
based trajectory planning methods can be further categorized
as rule-based and optimization-based. Rule-based planning
methods generate trajectories using a set of rules given
the current excavation condition [2], [5]. After fine-tuning,
rule-based methods can perform pretty well under specific
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fixed environments. However, it lacks generalization abil-
ity, making it hard to be efficiently applied to dynamic
environments. Optimization-based planning methods try to
generate trajectories that can minimize (or maximize) certain
objectives based on the excavator’s kinematic and inverse
kinematic dynamic models and the environment information
[6], [7]. Such methods can work under different excava-
tion environments, provided the excavator model is correct
and the environment information is sufficient. However,
optimization-based methods suffer from two disadvantages.
First and most importantly, it is usually very difficult to
model the interaction dynamics between the excavator and
the environment, which makes it hard to accurately optimize
the trajectory. Although one can fine-tune a set of empirical
parameters to adjust the dynamics, such parameters need
to be re-tuned when the excavation task changes, e.g., the
interaction dynamics should be different between digging
sand and digging gravel. Second, an optimization-based
trajectory planning problem might have multiple solutions,
or the solutions might be different given different initial
trajectories, which reduces the stability of the planning
process.

Learning-based trajectory planning methods aim to gen-
erate excavation trajectories from data, either from self-
generated data, i.e., through reinforcement learning (RL) [8],
[9], or from real-world expert data, i.e., through imitation
learning (IL) [10]- [11]. The RL methods adopt the concept
of agent learning actions under different environments with
the aim of maximizing a pre-defined expected cumulative
reward through interactions with the environment [12]. Tra-
jectory planning and excavator control are usually coupled
in RL methods, i.e., the agent learns the optimal actions (i.e.,
joint position, velocity, acceleration, or even hydraulic cylin-
der’s pressure) for different states, and such actions make
up trajectories. [8] proposed a RL-based excavator control
method using the Proximal Policy Optimization with Covari-
ance Matrix Adaptation (PPO-CMA) algorithm. Simulation
results showed that the poposed method could move up to
97% of a predefined mass. There are two drawbacks of
RL-based methods. First, the agent requires numerous data
to fully explore possible actions for different environments,
thus lacks data efficiency. Second, consequently, RL-based
methods are usually trained in simulation, since it is really
time and cost consuming, and even dangerous to train an
RL agent in real-world. However, there are usually huge
gaps between simulation models and real-world physics,
making it hard for RL-based methods to be transferred to
real-world applications. The IL-based methods aim to mimic
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the trajectories generated by human experts [13] - [14]. For
example, [11] proposed a linear regression based imitation
learning model learned from expert wheel loader drivers,
and [10] improved the data efficiency of the imitation-based
control using clustering and association analysis. The main
disadvantage of IL-based trajectory planning methods is that,
if the expert data can not cover all environment conditions, or
the data is severely biased, the learned policy map may fail
under those environments that are rarely encountered. Be-
sides, the expert operations might not be optimal considering
that excavation is a very complicated task. In addition, the
trajectories generated by such methods may not be feasible,
e.g., do not satisfy the inverse kinematics or violate hard
constraints, especially when the policy is learned by a neural
network.

In this paper, we propose an IL and model integrated
method for excavation trajectory planning. We first collect
expert trajectories under various environments and learn a
policy network from expert data through imitation learning.
Then, we apply and update the learned policy in a DAG-
GER (Dataset Aggregation, [15]) fashion. If the trajectory
generated by the policy network is obviously not optimal
(checked by human experts), the human experts will operate
the excavator to finish the excavation task, and the expert
trajectories will be added to the dataset of IL. If the experts
think that the trajectory is good, it will be used as the
reference and the initial trajectory for the lower-level model-
based trajectory planning algorithm, which will improve
such a trajectory in terms of satisfying hard constraints,
guaranteeing correct kinematics, increasing smoothness, and
minimizing user-defined objectives. Finally, the generated
trajectory will be applied to a real excavator robot, which
will be evaluated by experts and added to the dataset of IL.

To summarize, our main contributions are:
• We present a two-stage method for excavation trajectory

generation. Our method can take advantage of the ben-
efits of both model-based and learning-based methods,
and avoid their disadvantages, i.e., we can get expert
trajectory as guidance from IL and make the trajectory
feasible/optimal using the model-based method;

• Our method can be generalized for handling different
geometry and material types of terrain;

• We thoroughly tested this integrated method in real
robots across different material environments. The ex-
perimental results show that the proposed method can
increase the excavation weights by up to 24.77% mean-
while with low variance.

In the following of this paper, we first define the excava-
tion task in Section and present the methodologies used in
Section II. In Section III, we show the experiment settings,
results, and discussions. Finally, we conclude this paper and
discuss future directions in Section IV.

II. METHODOLOGY

We consider the trajectory planning for single excavation
given the terrain and the point of attack (POA, the point
that excavator bucket contacs the material first). Formally,

let s be the state of the environment which consists of the
terrain information and excavator status, a be the action,
i.e., the trajectory under the current state. The goal is to
design a policy framework ⇡(s) such that a = ⇡(s) is the
optimal action under s. We propose a two-stage IL and model
integrated policy framework ⇡(s) = ⇡Model(⇡IL(s)). We show
this framework in Fig. 1.

STOMP

Trajectory
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ActorNew state

Trajectory shape

State 

Human check

Good? Human demonstration
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Action 

Original 
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No
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Fig. 1: Algorithm framework

We first use the demonstration data collected from human
operations to train an actor neural network, which acts as
⇡IL(.). Given a new state s, we get an initial trajectory shape
by ⇡IL(s). Then, we manually check whether this trajectory
shape is good or not for the current state. If the trajectory
shape is good, we use it as the initial trajectory and the
guidance trajectory in the stochastic trajectory optimization
for motion planning (STOMP, [16]) optimization module,
which acts as ⇡Model(⇡IL(s)). The STOMP considers the
excavator’s kinematic models to guarantee the feasibility, the
hard constraints such as the excavation boundaries to enhance
safety, the smoothness of the trajectory to reduce energy, and
some user-defined objectives to improve the initial trajectory.
The optimized trajectory is then applied to the Franka Panda
robot. If the trajectory shape generated by ⇡IL(.) is not good,
we will show a trajectory by directly operating the robot.
Under both conditions, the robot should execute a trajectory
a (either optimized by STOMP or shown by human). After
the excavation, we will evaluate the trajectory by a value r
from 0 (acceptable) to 10 (very good), then store the (s, a, r)
tuple as new demonstration data. The actor-network is then
updated using the aggregated demonstration data set.

In the following of this section, we first show the definition
of the state s, action a, and the structure of the actor
neural network ⇡IL(.). Then, we show the mechanism of the
STOMP algorithm and how we integrate the trajectory shape,
kinematics, hard constraints, and user-defined objectives into
it.

A. First stage: IL-based actor

We use terrain information as the state s, including geo-
metric shape and material type.

1) Geometric shape:
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For the terrain shape, it is usually captured by a grid map
in real-world applications. A grid map can be represented
by a two-dimensional array, with the size determined by
precision. One approach to formulate the geometric infor-
mation sg is to directly use the entire grid map. However,
such an approach will make the actor-network complicated,
e.g., the convolution neural network (CNN) might be needed
to improve the mapping performance. And the large state
space requires a large amount of data to train the actor-
network. In fact, since the excavator base usually does not
swing during a single excavation, once the POA is fixed,
the excavation process is only related to a specific part of
the terrain, i.e., the neighbor areas along the straight line
between the bucket point and the excavator base. As shown
in Fig. 3, the excavation-related terrain is the orange area.
Considering this pattern, we propose a sectional-volume-
based state representation. We first uniformly segment the
orange area to n sections. For each section, we go through
each point and calculate the relative height, i.e., the absolute
height of the grid map point minus the absolute height of
the bucket point, and add them up as the feature for that
section. In this way, we can get a sg 2 Rn⇥1 with the terrain
information relative to the POA point.

2) Material type:
In reality, the material of the terrain will affect the char-

acteristics of the trajectory. Compared with the trajectories
for the sand-like material, the trajectories of rocky terrain
should be shallower and the trajectory points will be denser
(sampling in the time domain with equal time period). In that
case, we have to take material type into our consideration
when generating the trajectories. As shown in Fig. 2, we
incorporate a classification model into the whole pipeline.
For simplicity, we only capture one image of the terrain while
getting the point-cloud of the terrain at the same time, and
then input this image into our pre-trained classifier to get the
material feature (or material label) sm for our next stage.

The state vector now includes both the geometric and the
material information about the terrain. As shown in Fig. 2,
we concatenate the geometric feature sg and material feature
vector sm into the state vector s, which is {sg, sm}.

In order to reduce the network size as well as the training
data, we uniformly (in the time domain) select m points
from an excavation trajectory as the action a. Note that
a trajectory can be represented by a sequence of 4 joint
states (i.e., swing, boom, arm, and bucket), or a sequence
of 4 dimensional bucket positions (i.e., x,y,z, and the angle
of the bucket point). For this problem, there are no swing
operations, indicating the number of joints can be reduced to
3 and the bucket position can be represented by 3 variables
(i.e., distance to the excavator base in the x-y plane, z, and the
angle of the bucket point). Therefore, we get an a 2 R3m⇥1.

Given the collected demonstration data D =
{(s1, a1), (s2, a2), . . . (sN , aN )} where N is the number
of demonstrations, we train an actor neural network ⇡IL
to minimize the mean square error (MSE) between the
demonstration actions and the predicted actions, i.e.,
min 1

N

PN
i (ai � ⇡IL(si))2. As shown in Fig. 1, this actor

State

Action

Actor

Material Image Classifier

Terrain Image

Feature Extractor

Terrain Pointcloud

+

Trajectory

Fig. 2: Architecture of actor trajectory generation
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x-y

z

...POA

Fig. 3: An illustration of the geometric feature extraction of
the excavation-related terrain: top view of the terrain and
the excavator (left), and side view of the terrain for feature
extraction(right)
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network will be re-trained when new demonstration data is
available. The new demonstration data come with human
evaluation, i.e., a value ranging from 0 to 10 which indicates
the trajectory is just “acceptable” to “very good”. We use
an importance sampling technique to re-train the actor
network. Trajectories with higher evaluation values have
higher possibilities to be selected.

B. Second stage: STOMP optimizer
STOMP is a stochastic trajectory optimization method. It

explores the trajectory space by generating random noisy
trajectories around an initial trajectory and updates the
trajectory based on the cost of candidate trajectories in
a probabilistic way. Details of STOMP can be found at
[16]. In this paper, we select STOMP as the second stage
optimization method due to the high flexibility (e.g., no
gradient information is needed) and efficiency (e.g., can
converge in a small number of iterations once the hyper-
parameters are fined tuned). The task for the second stage
STOMP optimizer is to improve the trajectory shape given
by the first stage IL actor such that the excavator kinematics
and hard constraints are satisfied, the trajectory is smooth,
the initial trajectory generated by the IL actor is considered,
and the user-defined objectives are maximized.

To satisfy the excavator kinematics, we use the joint state
space as the trajectory space. For each iteration, the STOMP
generates an updated sequence of joint states, which are guar-
anteed to satisfy the kinematics and inverse kinematics. Note
that the bucket positions are needed to calculate other cost
values, we calculate the bucket position pi = [xi, yi, zi,↵i]
from the joint state of a trajectory point using the kinematics.

We enhance the other three considerations by adding them
to the cost functions of STOMP. The hard constraints of the
excavation tasks mainly indicate that the materials outside
the excavation area should not be touched. For example, if
the task is to load a pile of sand standing on the solid ground
to a truck, the excavator should not penetrate the ground. If
the task is to dig a trench, the excavator should not touch
any area outside the interested trench cube. In this paper,
we add an exponentially increased penalty to the violation
of hard constraints. Mathematically, let A 2 R3 be the 3-
dimensional excavation area, the hard constraint cost for a
trajectory point pi is defined as

chc
i =

(
ewhcd(pi,A), if pi /2 A

0, otherwise
(1)

where d(pi, A) is the distance from pi to A and whc is
the weight. The minimum Euclidean distance is used as
the d(.) in this paper. Larger whc indicates more rigorous
requirements to satisfy the hard constraints.

The smoothness of a trajectory has already been discussed
in [16], we adopt the same method to improve the smooth-
ness, the cost of which is defined as Csm. Note that the capital
C indicates this cost is calculated for the entire trajectory.

Although not accurate, the trajectory generated by the IL
actor contains valuable guidance for the general trend of the
desired trajectory. The goal of STOMP is to improve the

trajectory generated by the IL actor. The updated trajectory
should not deviate from the initial trajectory too much. To
enhance the role of the initial trajectory, we add a penalty for
deviating from the initial trajectory. For a trajectory point pi,
let p̂i be the corresponding initial trajectory point, the cost
is defined as

cin
i = winkpi, p̂ik (2)

User-defined objectives are used to regulate the initial tra-
jectory generated by the IL actor using empirical knowledge
so that the updated trajectory is reliable. In this paper, we
add volume-based knowledge to the cost function, i.e., the
excavation volume should be a constant value. Ideally, if
the interactions between the terrain and the bucket can be
accurately modeled, we can precisely calculate the volume
for a trajectory. However, it is very difficult to model such
interactions, and the computation burden is usually very
heavy even if it can be modeled. In this paper, we simply use
the volume surrounded by the trajectory and the terrain as
the volume that can be excavated. Considering the interaction
errors, we add an adjustment factor to the raw volume.
After fine-tuning, this method is shown to be quite efficient
when the materials are uniform. Let Vraw be the raw volume
calculated from the trajectory and terrain, V̂ be the desired
volume, the volume cost is

Cvo = wvoe
kVraw�V̂ k (3)

In summary, the trajectory-based cost function for STOMP
is

C traj = Csm + Cvo (4)

For each trajectory point pi, the point cost function is

cpoint
i = chc

i + cin
i (5)

III. EXPERIMENT

A. Experiment settings

We test the proposed algorithm on a Franka Panda robot
and select sand and wooden block as the excavation material.
The experiment platform is shown in Fig. 4a and Fig. 4c.
Specifically, we have prepared various sizes of the wooden
block to mimic the real environment as we can, and the types
and sizes of the wooden block are shown in Fig. 4d.

We use the Microsoft Azure Kinect to get the point-cloud
of the terrain and transform it into a grid map. The boundary
of the excavation area is set as a 0.8m⇥ 0.4m rectangle in
front of the robot base origin with 0.2m offset. Fig. 4b

We test three trajectory planning methods: the proposed
method (denoted as IL+STOMP), pure imitation learning
(denoted as pure-IL), and pure STOMP (pure-STOMP). For
the pure-IL learning method, we do not revise the trajectory
generated by the IL actor, and directly apply it to the robot.
The action is defined at the bucket space, some points of the
trajectory might not satisfy the inverse kinematics. We use
a linear interpolation method to complete the trajectory. For
pure-STOMP, we do not use the initial trajectory generated
by the IL actor. Linear initialization is used given the POA
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(a) sand (b) grid map

(c) wooden block (d) wooden block details

Fig. 4: Experiment settings: Two types of material for
experiment, (a) sand and (c) wooden block; (b) Terrain
visualization using grid map [17]; (d) Sizes of the wooden
block

and the ending point of the trajectory. During the optimiza-
tion, we do not take account of the trajectory deviation cost
cin
i since there is no reference trajectory. Other costs and

settings are the same as those in IL+STOMP.
Apart from testing on the sand material, we also test our

method on the wooden block material to verify our various
types of actors. We have trained two types of actors, namely
the generic actor, and the specialized actor. The generic
actor is trained with all the episodes of the data, while the
specialized actor is trained with the episodes data containing
only one specific type of terrain, such as wooden block
material, and its corresponding trajectory. We would like to
see how well can our actor generalize in different types of
material, where we compare the result of using the pure-
STOMP method as our baseline.

For each method, we conduct three episodes of experi-
ments. For each episode, we let each method conduct 15
excavations. This number is based on the observation that it
usually takes at least 15 excavations to remove the materials
that stands above the zero terrain height (as shown in Fig
4d). The initial terrain for each episode is set as the same by
manually modifying the terrain. Then, we design a rule-based
POA selection algorithm to automatically find the POA. The
key idea is to find the highest point of the terrain and set
the POA at a certain distance beyond it. This POA selection
algorithm does not change for all experiments.

B. Experiment results and discussions
1) Trajectory geometric comparison:
To better illustrate the difference among the three methods,

we show the trajectories given the same terrain state in Fig 5.
In Fig 5, the solid red lines represent the trajectory of the

bucket points, solid blue lines are the terrains and dashed

begin end bucket terrain trajectory

pure-IL

pure-STOMP

IL+STOMP

Fig. 5: Trajectories generated by different methods under the
same terrain state

blue lines are the tangent lines of the bucket points. For
each subplot, the left-most trajectory point is the POA, and
the right-most trajectory point is the pre-defined ending
point. It can be shown that, compared with pure-IL, the
IL+STOMP method can excavate more volumes since the
area, surrounded by the trajectory and the terrain, is larger.
Compared with pure-STOMP, the IL-STOMP method is also
supposed to excavate more volumes if we apply them to the
real robot since the bucket angles (i.e., the angle between
the dashed blue lines and the x� y axis) of the IL-STOMP
method is more reasonable. As shown in the figure, for the
IL-STOMP method, the bucket angle reaches 0 at the end
of the “drag” operation (i.e., the right most area along the
0 terrain), and quickly increases so that the materials can
be excavated into the bucket. However, for the pure-STOMP
method, the bucket angle changes almost linearly and the
bucket will lift up too late, the materials are more likely to
be pushed aside instead of to be excavated into the bucket.
This observation can be proved by the experiment results in
the next section.
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Fig. 6: IL trajectory execution on the robot arm

And in Fig. 5, we plot the final trajectory generated by
our IL-STOMP method on the sand piles. The series of
triangles in the graph indicate the series of bucket motions of
excavation with the blue bold line showing the current angle
of the bucket. The visualization graph gives an intuition of
the method trying to mimic the human operator’s behavior,
such as aligning the penetration angle along with the tra-
jectory direction, also adjusting movement pace in the time
domain during penetrating and dragging the target material.
This type of learned pattern is displayed in another trajectory
execution on the robot arm, as shown in Fig. 6. We sample
these six snapshots of the entire excavation. Starting from
the home position (top-left), the arm first reaches the POA
(top-mid), the beginning point of the trajectory. Then it tries
to penetrate into the piles (top-right), drag the material inside
the bucket (bottom-left), and close the bucket as the bucket
is full (bottom-mid). It finishes the trajectory at a fixed given
pose (bottom-right).

2) IL and STOMP comparison:
We use the average excavated weight (noted as Avg-

W in kg) and the success rate (noted as Suc-R) as the
evaluation metrics. For this experiment, we use the sand
material as our excavation target. The experiment results
are shown in Table I. Note that the “Stdev” is the standard
deviation of all 15 excavations for each episode, and the
two improvement columns under the IL+STOPM method
represent the improvements compared with pure-STOMP and
pure-IL, respectively.

TABLE I: Experiment performance of different methods

Epi Index pure- pure- IL + STOMP
STOMP IL value improvement

1
Avg-W 0.763 0.905 0.969 26.96% 7.15%
Stdev 0.176 0.193 0.148 -15.59% -23.09%
Suc-R 0.867 1.000 1.000 15.38% 0.00%

2
Avg-W 0.742 0.978 0.964 29.94% -1.35%
Stdev 0.146 0.185 0.143 -1.75% -22.62%
Suc-R 0.867 1.000 1.000 15.38% 0.00%

3
Avg-W 0.813 0.920 0.960 18.00% 4.30%
Stdev 0.101 0.236 0.108 6.95% -54.30%
Suc-R 0.800 1.000 1.000 25.00% 0.00%

Total
Avg-W 0.773 0.932 0.965 24.77% 3.25%
Stdev 0.144 0.204 0.131 -8.78% -35.52%
Suc-R 0.844 1.000 1.000 18.42% 0.00%

It can be shown that the IL+STOMP method outperforms
other methods in terms of both excavation weight and
the success rate. Compared with pure-STOMP, IL+STOMP
can dramatically improve the excavation weight by up to
29.94% in episode 2 and by 24.24% on average. The main
reason is that, for the STOMP optimization stage, the linear
initialization strategy used in pure-STOMP is not as good as
the initial trajectory generated by the IL actor in IL+STOMP.
STOMP is sensitive to the initial trajectory, different initial
trajectories usually lead to different exploration directions
thus different final trajectories. Meanwhile, for IL+STOMP
and pure-STOMP, the overall standard deviations of the
excavated weights are almost the same. This is due to the
volume cost in STOMP, which is a dominant objective due to
the exponential property. The planned trajectories from both
pure-STOMP and IL+STOMP tend to surround the same vol-
ume, which reduces the planning variance. The IL+STOMP
method succeeds in planning all the trajectories, while the
average success rate of pure-STOMP is 84.4%. The failure
cases result from bad initial trajectories. As an example,
the linear initialized trajectory may not penetrate the terrain,
leaving no explore space for STOMP to reduce the volume
cost. This further indicates the initial trajectories generated
by the IL actor are better than the linear initialization strategy
used in pure-STOMP.

Same as IL+STOMP, the success rate of pure-IL is also
100%. In addition, the average excavation weight of the pure-
IL method is close to IL+STOMP. However, the performance
of pure-IL is not stable. The standard deviation of IL-STOMP
is 35.52% better than pure-IL. This is due to the fact that
the demonstration data is limited. The IL actor trained by the
limited data can not cover every terrain state thus introducing
errors and disturbances. In fact, the raw trajectory generated
by the pure-IL method can not be applied directly to the real
robot since there might be trajectory points that do not satisfy
the inverse kinematics. We used the linear interpolation
method to make the raw trajectories feasible. In addition,
without the STOMP optimization, the volumes surrounded
by the trajectories generated by the IL actor usually vary
a lot, making the standard deviation of excavation weight
relatively large (which can be seen from Table I).

TABLE II: Comparison of generic model and specified
model of different materials

Model Baseline Wooden block Generic
Avg-W 0.21248 0.22882 7.69% 0.22754 7.09%
Min-W 0.02530 0.12740 403.56% 0.08190 223.72%
Max-W 0.39370 0.32060 -18.57% 0.32160 -18.31%
Stdev 0.08332 0.05127 -38.47% 0.05391 -35.30%
Suc-R 0.5556 0.8444 52.00% 0.7442 33.95%

3) Material model comparison:
As for the comparison of material type, here we compare

our methods with the baseline method. The baseline method
is using a fixed template trajectory and later get optimized
using pure STOMP for the purpose of kinematic feasibility.
Also, we use the same denotation for the weight and success
rate like previous experiment.
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In Table II, we can see that our method can beat the
baseline method easily for 7.69% and 7.09% in terms of
average excavation weight accordingly. Both generic model
(generic) and specialized model (wooden block) have a lower
variance of excavation weight and a better success rate. This
is because the baseline model cannot have a good adaption to
the terrain when generating the trajectory, while our methods
try to learn the hidden characteristics of terrain excavation
and express them in the trajectories generated. For example,
our models will be more conservative in the rocky terrain
because this type of material will incur a higher stuck rate
during excavation for the unknown rock distribution under
terrain surface, which explains that our method has a lower
maximum of excavation weight, but a much higher minimum
weight compared to baseline model.

The result shows that the generic model surprisingly
achieves a near performance level as the specialized model
that has a slightly better average weight. Among our pur-
posed methods, the specialized model displays its proficient
capability of finishing the excavation job in its own so-
phisticated material domain, with a lower excavation weight
variance and higher success rate. It shows a stable and
strong performance in this relatively difficult material type.
The generic model is able to generate similar performance
trajectory like the specialized model since it has a close
excavation weight, although it still has a small gap in terms
of success rate.

IV. CONCLUSION

In this paper, we proposed an IL and STOMP integrated
trajectory planning algorithm for autonomous excavators. We
firstly trained an IL actor using demonstration trajectories
under various terrain states incorporating geometric and
material information. Then, we designed a STOMP algorithm
to improve the trajectories generated by the IL actor so
that kinematics feasibility is guaranteed, hard constraints are
satisfied, smoothness is improved, and the desired volume is
approached. Finally, we tested the proposed algorithm on a
Franka Panda arm and the results showed that the proposed
algorithm could increase the excavation weights by up to
24.77% compared with pure-IL and pure-STOMP methods.

There are several directions that future studies can focus
on. First, we used a small demonstration dataset (with 128
trajectories) to train the IL actor. It will be interesting to
evaluate the proposed method under a larger and more
diversified dataset. We expect that the performances of both
the IL+STOMP method and the pure-IL method should
increase, especially the latter. Second, after certain episodes
of newly collected data, the DAGGER framework could not
improve the result any more, at least not in an obvious way.
This can be a huge challenge in the real world excavation. We
would like to try other more advanced imitation learning or
reinforcement learning techniques, such as few-shot learning.
Third, it is worthwhile to apply the proposed method to
real excavators. To this end, collecting demonstration data,
cleaning the data, formulating the objectives in STOMP,
applying the trajectory, etc. should be carefully considered.

REFERENCES

[1] L. Zhang, J. Zhao, P. Long, L. Wang, L. Qian, F. Lu, X. Song, and
D. Manocha, “An autonomous excavator system for material loading
tasks,” Science Robotics, vol. 6, no. 55, 2021. [Online]. Available:
https://robotics.sciencemag.org/content/6/55/eabc3164

[2] A. Stentz, J. Bares, S. Singh, and P. Rowe, “A robotic excavator for
autonomous truck loading,” in Proceedings. 1998 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. Innovations in
Theory, Practice and Applications (Cat. No.98CH36190), vol. 3, 1998,
pp. 1885–1893 vol.3.

[3] D. Jud, G. Hottiger, P. Leemann, and M. Hutter, “Planning and control
for autonomous excavation,” IEEE Robotics and Automation Letters,
vol. 2, no. 4, pp. 2151–2158, 2017.

[4] L. Wang, Z. Ye, and L. Zhang, “Hierarchical planning for autonomous
excavator on material loading tasks,” in Proceedings of the 38th
International Symposium on Automation and Robotics in Construction
(ISARC). International Association for Automation and Robotics in
Construction (IAARC), November 2021.

[5] F.-Y. Wang and P. Lever, “On-line trajectory planning for autonomous
robotic excavation based on force/torque sensor measurements,” in
Proceedings of 1994 IEEE International Conference on MFI ’94.
Multisensor Fusion and Integration for Intelligent Systems, 1994, pp.
371–378.

[6] M. Arsenault, L.-F. Tremblay, and M. Zeinali, “Optimization
of trajectory durations based on flow rate scaling for a
4-dof semi-automated hydraulic rockreaker,” Mechanism and
Machine Theory, vol. 143, p. 103632, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0094114X19312777

[7] Z. Li, X. Li, S. Liu, and L. Jin, “A study on trajectory planning of
hydraulic robotic excavator based on movement stability,” in 2016
13th International Conference on Ubiquitous Robots and Ambient
Intelligence (URAI), 2016, pp. 582–586.

[8] B. J. Hodel, “Learning to operate an excavator via policy
optimization,” Procedia Computer Science, vol. 140, pp.
376–382, 2018, cyber Physical Systems and Deep Learning
Chicago, Illinois November 5-7, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050918319744

[9] I. Kurinov, G. Orzechowski, P. Hämäläinen, and A. Mikkola, “Au-
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