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ABSTRACT
Guide dogs can vastly improve vision-impaired people’s daily-life
quality by guiding them to destinations while avoiding obstacles.
Animal guide dogs are costly for training. This paper presents a
robot guide dog system to take a vision-impaired user to a destina-
tion while avoiding obstacles in the environment for both the user
and the robot dog. A novel human-robot kinematic model and an
MPC-based motion planning and control algorithm are proposed.
We implement the method on a wheeled ground robot. All the sen-
sors are mounted on the robot, and the human user does not have
to take additional sensor devices. Simulation and real-world experi-
ment results show that the proposed method can tackle challenging
navigation tasks in narrow corridors for vision-impaired people.
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1 INTRODUCTION
Applying modern technology to navigation assistance devices has
great potential to assist vision-impaired people and improve their
life quality. Current developments focus on three main categories,
such as wearable devices [14], intelligent cane [9], and robot guide
dogs [3, 6, 7, 10]. This article explores the robot guide dog solution.

In recent years, a large number of works related to robot guide
dogs have been proposed. In [3], a learning method is used for the
robot to recognize and follow the existing trail line better. In [10],
the presented robot guide dog can generate multiple paths, store
them, and retrace the desired stored path based on environmen-
tal observation. In [6], a robot platform is designed along with a
navigation algorithm, which can lead vision-impaired people to
the destination while avoiding obstacles. Despite the advances,
these approaches mainly consider robot geometry and dynamics
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constraints of itself and assume the user always follows the same
path as the robot, which generally does not hold. Indeed, the user
follows the end of the rod that is connecting the robot and the
human. Only making sure the robot guide dog is collision-free does
not necessarily mean humans will also be collision-free. However,
the combined human and robot system must be considered and
modeled for the collision avoidance purpose. As compared with the
robot itself modeling, less research has focused on the entire human
and robot system modeling. In [7], a hybrid system modeling of
a four-legged robot and human system is presented. This result
mainly focuses on controlling the legged robot, and the proposed
algorithm difficult for real-time implementation.

In this paper, a generalized kinematic human-robot model is pro-
posed and a formulation of collision-free constraints using Model
Predictive Control (MPC) is presented for robotic guide dog navi-
gation. We focus on tackling the challenge of human-robot system
modeling and collision-free optimal control. The formulated prob-
lem is solved based on sequential convex optimization, and Model
Predictive Control (MPC)-based control algorithm is designed for
navigation and obstacle avoidance. MPC technique has been proven
effective and is increasingly used in robotics [2, 11–13, 18]. In this
work, the cost function and constraints in MPC are designed to
guarantee collision-free for the human-robot system and fast com-
putation.

We implement our approach and test it in both simulations and
real-world experiments using a wheeled ground robot. Experimen-
tal results show that the proposed methods can tackle challenging
navigation tasks with sharp turns while ensuring collision-free for
the vision-impaired user. In this paper’s simulation environment,
the algorithmwith the commonly used bicycle model failed to make
the robot pass a narrow aisle with a sharp turn. In contrast, the
MPC algorithm with the proposed model can successfully control
the robot to pass. We define modeling error as the difference be-
tween model prediction result and pose estimation result. From the
calculation, the maximum modeling error is 0.15𝑚. The mean error
is 0.057𝑚, and the error standard deviation is 0.031𝑚.

2 MODELLING AND MPC DESIGN
2.1 Human and Robot Connection
We refer to the work presented by Kaveh et al. [7], where the
user and robot are connected with a rigid rod, with a free joint at
both the human end and the robot end. For vision-impaired users,
navigation information is transmitted through the rod. The human
user is assumed to move so that she/he would face the guide dog
along the connecting rod and keep approximately the same distance
to the guide dog as the rod length. Assuming the human user will
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always follow the rod end, we assume the force applied to the robot
through the rod by the human user can be fully compensated. Thus
the robot movement is only driven by its own control commands.

2.2 System Kinematic Model
Intuitively, the described connected human and robot system is
similar to a vehicle. Hence a large body of work applies the bicy-
cle model [8] when solving the motion planning problem. For the
bicycle model, usually, the no-slip condition [5] is stressed. How-
ever, the system of guide-dog and humans does not follow such an
assumption. Human movement can be pure rotation without posi-
tion change while the robot is moving around the human. Another
drawback of the bicycle model is limiting the ability to do sharp
turns, which is rather common in indoor situations. Therefore, this
section derives a novel human and robot kinematic model based
on the relationship defined in Sec. 2.1.

2.2.1 Robot State Update. We denote the robot state as [𝑥𝑏 , 𝑦𝑏 , 𝜃𝑏 ],
where (𝑥𝑏 , 𝑦𝑏 ) represent the robot coordination and 𝜃𝑏 is the robot
heading angle. For simplification, We select the unicycle model
[4] to describe the robot movement. The kinematic model of an
unicycle type robot in discrete time is described as:

𝑥𝑏
𝑘+1 = 𝑥𝑏

𝑘
+ Δ𝑡 · cos𝜃𝑏

𝑘
· 𝑣𝑘

𝑦𝑏
𝑘+1 = 𝑦𝑏

𝑘
+ Δ𝑡 · sin𝜃𝑏

𝑘
· 𝑣𝑘

𝜃𝑏
𝑘+1 = 𝜃𝑏

𝑘
+ Δ𝑡 · 𝜔𝑘

(1)

Where 𝑣 is the linear velocity input, 𝜔 is the angular velocity input,
𝑘 represent for iteration step, and Δ𝑡 is the period of the update
loop.

2.2.2 Human state update. We denote human position as [𝑥ℎ, 𝑦ℎ].
Without assuming human speed is equal to the robot speed, the
human velocity dynamics is challenging to formulate since both
interactions between the robot and the human’s intention would
affect the velocity. However, since the human will follow the rod
end and keep a constant distance from the robot, we can infer the
human position at the next step based on the current configuration.

Figure 1: Human position inferring.

In this section, we propose a model of human position update.
As shown in Fig. 1, ℎ𝑘 and 𝑏𝑘 are the positions of human and robot
at step 𝑘 , respectively. The length of the rod is 𝑟 , which is fixed
when the robot moves. At next time step 𝑘 + 1, the robot moves
to 𝑏𝑘+1. The next human position ℎ𝑘+1 is assumed to locate on the
line connecting ℎ𝑘 and 𝑏𝑘+1, with a distance of 𝑟 to the location of
𝑏𝑘+1. Based on this assumption, we can further formulate the state

update equation for the human user as follows,{
𝑥ℎ
𝑘+1 =

𝑟
𝑑
· 𝑥ℎ

𝑘
+ (1 − 𝑟

𝑑
) · 𝑥𝑏

𝑘+1
𝑦ℎ
𝑘+1 =

𝑟
𝑑
· 𝑦ℎ

𝑘
+ (1 − 𝑟

𝑑
) · 𝑦𝑏

𝑘+1
(2)

where it is defined that 𝑑 = ∥ℎ𝑘 − 𝑏𝑘+1∥.

2.3 MPC Design
An MPC framework is leveraged here for local motion planning
for the robot. The prediction is achieved by utilizing the system
kinematic model presented. The cost function and constraints are
designed to guarantee collision-free as well as fast computation.
In particular, the collision-free constraints are linearized at each
iteration. The cost function is built to penalize the error of the states
and the control effort. Equality constraints are constructed based
on the linearized state update equations. In contrast, inequality
constraints are applied to regulate the upper and lower bounds
of states and control inputs, considering obstacle avoidance. The
optimization problem is then formulated as:

min (𝑥𝑁 − 𝑥𝐹 )𝑇 𝑃 (𝑥𝑁 − 𝑥𝐹 )+
𝑁−1∑
𝑘=0

(𝑥𝑘 − 𝑥𝐹 )𝑇𝑄 (𝑥𝑘 − 𝑥𝐹 ) +
𝑁−1∑
𝑘=0

𝑢𝑇
𝑘
𝑅𝑢𝑘

s.t.



𝑥0 = 𝑥𝑆

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘

𝑥min ≤ 𝑥𝑘 ≤ 𝑥max
𝑢min ≤ 𝑢𝑘 ≤ 𝑢max
𝐶𝑥𝑘 ≤ 𝑧

(3)

In Eq. (3), 𝑁 is the prediction horizon, 𝑥𝑆 is the initial state.
𝑥𝑘+1 = 𝐴𝑥𝑘 +𝐵𝑢𝑘 is the state space representation of the kinematic
model. The state vector is defined as𝑥 =

[
𝑥𝑏 𝑦𝑏 𝑥ℎ 𝑦ℎ 𝜃𝑏

]𝑇 ,
and the control vector is defined as 𝑢 =

[
𝑣 𝜔

]𝑇 . The inequality
constraints 𝑥min ≤ 𝑥𝑘 ≤ 𝑥max, 𝐶𝑥𝑘 ≤ 𝑧 and the local target state
𝑥𝐹 are carefully selected based on local occupancy grid map with a
safe clearance, which makes the collision avoidance problem linear,
convenient and fast to solve.

3 EXPERIMENTS
3.1 NavDog System Design
As shown in Fig. 2, there are three modules of our NavDog system:
perception, global planning, and MPC-based motion planning and
control. The perception module takes the raw sensor data, including
wheel odometry, Lidar, and IMU, as inputs. It detects the obstacles’
and the user’s states based on the real-time Lidar data and calculates
the robot state using Adaptive Monte Carlo Localization (AMCL)
[16, 17]. The global planning algorithm is based on a graph search
method. Inputs are the pre-build LIDAR environment map, the
detected obstacles, the system state, and the destination information.
The output is a global reference trajectory, which is also the input
of MPC controller. The MPC controller relies on a linear QP solver
called ‘OSQP’ [15].

The robot platform used is TurtleBot3 Waffle Pi [1], a ground
wheeled robot. We take advantage an extended Kalman Filter (EKF)
to filter the localization outputs. The EKF is realized with the
OpenCV library. The system runs on ROS kinetic with Ubuntu
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Figure 2: NavDog System diagram.

Figure 3: Guide human in a simulation scenario. The robot
(red) and the human (green) need to move from one room
to another via a narrow corridor. The human and the robot
are connected with a rod with fixed length (blue line). Start
point is located at up right corner, and the end point is lo-
cated at up left corner.

16.04. Gazebo 3D rigid body simulator in ROS is exploited for simu-
lation. A virtual environment is constructed, and Gazebo simulates
and outputs the odometry and laser scan data. For visualization,
RVIZ graphical interface in ROS is used to display the results. In the
experiments, the localization maps are built with the ROS package
‘gmapping’, and the resolution of the maps is set as 0.05𝑚. The grid
mask size is 0.4𝑚. The length of the rod connecting the human user
and the robot is 0.8𝑚.

3.2 Guiding Human in Simulation
In the simulation, we built an area with two rooms as the test
environment. We compared our proposed model with the bicycle
model when implementing the algorithm.

First, we show the experimental results on the scenario where
the human and robot system needs to move from one room to
another via a narrow corridor (Fig. 3). The experiment results show
that the robot can guide the human user to make a sharp turn, go
through the narrow corridor, and successfully reach the destination.
There is no collision for both robot and the human user.

(a) Image 1. (b) Image 2. (c) Image 3.

Figure 4: Real world experiment set up.

To further validate the kinematic human-robot model proposed
in the paper, we also compare it with the bicycle model. We set up
the experiment using the same scenario and change the proposed
human-robot model to a bicycle model in the MPC controller. In
this experiment, the system failed at the first sharp turn, located at
position (2.4, 0.5) and reported it could not find a feasible collision-
free solution to turn. This result suggests that the proposed human-
robot model can handle sharper turns compared with the bicycle
model.

3.3 Guiding Human in Real World
In real-world experiments, a human user’s eyes are fully covered to
simulate a vision-impaired user. We select an office area and build
the corresponding map. The chosen experiment location includes
two open space connected with a narrow aisle around 1𝑚 wide. The
human-robot system’s initial location and navigation destination
are located in two different open spaces, respectively. The planned
path will pass through the aisle, and the trajectory shapes like the
letter ‘U’. A plastic rod is used to connect the human user and the
robot. During the test, the user’s eyes are covered. Hence the human
guidance information is sensed from the rod only. Fig. 4 shows the
real-world experiment set up.

Figure. 5 shows the experiment results, which are visualized
using RVIZ. Same as the simulation test, the human position is
marked with a blue square, and the system center is marked with
an orange dot. The start pose is shown in Fig. 5(a), then enter the
aisle (shown in Fig. 5(b)), exit the aisle (shown in Fig. 5(c)), and
reach the destination successfully (shown in Fig. 5(d)).

We further analyze the accuracy of our human position model-
ing. We attach markers for tracking the human trajectory during an
experiment and measure the marker positions as the ground truth.
Fig. 6 shows human positioning results. In Fig. 6, the red line shows
the ground truth human path; the blue line shows the estimated
human path from EKF; the dashed green line shows the human
position modeling and the dashed black line shows the human po-
sition measurements. The results suggest that the proposed human
positioning method can track human position successfully. Then we
define modeling error as the difference between model prediction
result and pose estimation result. The maximum modeling error is
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(a) Initial pose. (b) Enter the aisle.

(c) Exit the aisle. (d) Pose at end.

Figure 5: Real world experiment (RVIZ screenshots).

Figure 6: Human positioning results.

0.15𝑚. The mean error is 0.057𝑚, and the error standard deviation
is 0.031𝑚.

4 CONCLUSIONS
This paper proposes a novel approach to model the coupled system
of the human user and the robotic guide dog. Based on such a model,
an MPC motion planning algorithm is designed for navigation and
obstacle avoidance. The formulation of the collision-free constraints
leverages sequential convex optimization, and the method is im-
proved in this article to ensure fast computation for real-time im-
plementation. Complete system design is discussed afterward with
human and robot localization and global path planning modules.
To assess the system performance, both simulation and real-world
experiments are performed. According to the experimental results,
the proposed human-robot kinematic modeling method is validated,
and the obstacle avoidance constraints for MPC controller design
are proved to be effective.

Currently, the test is conducted with Turtlebot3 (wheeled robot),
and the collision-free constraints are linearized in the sub-convex

set. In the future, for robot sensitive to external force, dynamic
modeling for the human-robot relationship will be developed. For
the MPC controller design, quadratic or non-convex constraints
will be formulated, and the crowd scenario will be studied to enable
the system to work in more complex environments.
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