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Abstract
Autonomous landing of a quadrotor UAV on a vessel deck is challenging due to the special sea environment. In this paper,
we present an on-board monocular vision based solution that provides a quadrotor with the capability to autonomously track
and land on a vessel deck platform with simulated high sea state conditions. The whole landing process includes two stages:
approaching from a long range and landing after hovering above the landing platform. Only on-board sensors are used in
both stages, without external information input. We use Parrot AR.Drone as the experimental quadrotor platform, and a
self-designed vessel deck emulator is constructed to evaluate the effectiveness of the proposed vessel deck landing solution.
Experimental results demonstrate the accuracy and robustness of the developed landing algorithms.

Keywords Autonomous landing · Quadrotor · Vessel deck · Visual tracking

1 Introduction

Nowadays, unmanned aerial vehicles (UAVs) are playing
critical roles in many areas [1]. Numerous applications
exist that require autonomous maritime deployment and
retrieval of a UAV, such as iceberg monitoring, coastal
surveillance, and wildlife monitoring [2]. The vertical take-
off and landing capability (VTOL) makes the quadrotor
particularly suitable for maritime applications, where the
runway for takeoff and landing is often very short. However,
autonomous landing of quadrotors on a ship deck is a
challenging task owing to limited payload for sensors [3],
the unreliable GPS measurements [2], and especially ocean
waves’ disturbance [4].

Without using GPS measurements, for the moving plat-
form autonomous landing problem, vision based solutions
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are widely used, and various approaches have been studied
[5]. Compared with the on-ground vision landing system,
such as [6] and [7], on-board vision landing system is
typically adopted, especially for landing on a moving plat-
form [8]. For onboard vision solutions, some researchers
are interested in stereo vision systems, since stereo vision
systems are convenient to acquire depth information [9].
Reuben et al. present a stereo based method for the intercep-
tion of a static or moving target [10]. Target detection and
relative position estimation are realized by using two fisheye
cameras. Because stereo based method needs two cam-
eras, which leads to more weight on-board and increased
cost, many researchers propose monocular vision based
approaches. For example, Xudong et al. describe a UAV
implemented with vision and laser based localization algo-
rithm to track and land on a moving platform [11]. In that
work, a LiDAR scanning range finder is used to deter-
mine the altitude. In [12], Benini et al. present a real-time
GPU-based pose estimation system for UAV autonomously
takeoff and landing. The monocular video stream is pro-
cessed on-board, and the test results show that the proposed
system is able to provide precise pose estimation with a
frame rate of at least 30 fps and an image resolution of
640×480 pixels. About the camera type selection, some
researchers use ordinary cameras. In [13], Francesco et al.
committed to the ability of a vision algorithm to detect and
track a given landing sign. Optimized adaptive thresholding
technique is developed to ensure the robustness of the sys-
tem in different illumination situations. Benini et al. present
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an indoor mini-UAV localization system in [14]. With on-
board monocular vision and wireless sensor network, 10 cm
localization accuracy has been achieved. Some researchers
use infrared (IR) camera, which is able to work at dark envi-
ronments [15]. For example, Karl et al. use infrared (IR)
camera to track a pattern of IR lights in conditions without
direct sunlight [16].

Compared with other moving landing platforms, a
vessel deck environment is even more challenging. It may
have significant pose disturbances due to the sea waves
and the wind. Most studies have not demonstrated their
approaches can work when using vessel deck emulators,
which include both pose and heave motion. In [17], Botao
et al. have presented a control structure that achieves the
fast and accurate landing of quadrotor onto a vertically
sinusoidally oscillating platform. Their control structure
consists of three modules: a motion estimation module,
a trajectory generation module, and a tracking control
module. However, the roll and pitch movements of the
platform are not included. In contrast to the flat landing
platform, John et al. present a Laser-based guidance of a
quadrotor for precise landing on an inclined surface [18].
However, the pose angle of the landing platform is fixed in
the experiments. PITM et al. present a landing algorithm
that can land a quadrotor on a pose oscillating platform
in [19]. However, in their experiments, the quadrotor is
suspended from a string to restrict it from drifting away,
which is not realistic in real landing. Furthermore, the
movement of the platform is achieved by two people using
their hands. The dynamics of the landing platform is not a
good emulation of a vessel deck, and the quadrotor is too
close to people and could be very dangerous. The dynamics
of the ship-deck is introduced and emulated in [4]. The pose
of the ship deck with respect to the vehicle is estimated by a
vision system. However, that work didn’t include UAV state
estimation and motion control methods. A more complete
and realistic solution is presented in [20]. The authors
provide a complete approach which lands a UAV on a
kayak positioned 20 m from the shore. However, the indoor
test did not take the pose change of the landing platform
into consideration, and for the landing on the kayak, the
water waves are ‘mild’ according to their description. More
significantly, according to the experiment results, under
the indoor test environment without any disturbance, the
average landing accuracy is ± 12 cm from the center of the
board, and the landing success rate is less than 90%, which
is far away being satisfied for critical landing missions.

This paper presents a monocular vision based system
consisting of an autonomous long range approaching
method and an accurate landing algorithm using only on-
board cameras and other sensors provided by AR.Drone.
The main contributions of this work include two aspects.
First, simple but effective long range target detection and

approach algorithms are developed. Second, we propose
a novel system architecture that addresses realistic vessel
deck landing using only low-cost on-board sensors. The
designed landing process includes two stages: approaching
from long range and landing after hovering above the
landing platform. For the first stage, a robust method
is designed to drive the done to an area above the
landing platform. In this stage, the red color LEDs are
used for landing platform tracking. The field of view
(FOV) orientation of the front camera of the AR.Drone is
redesigned to help searching the landing platform, and the
state estimation is based on the new geometric relationship
between the camera and the landing platform. We use
a PID controller to stabilize the heading angle towards
the landing platform. For the second stage, the drone
lands autonomously on the landing platform accurately. We
accomplish the landing sign recognition using computer
vision solutions, and ‘H’ landing sign will be tracked once
it appears in the FOV of the bottom camera. The state
estimations are performed using on-board low-cost IMU,
ultrasonic altimeter, and the image informations. Kalman
filters are used to further improve the estimation accuracy.
Lastly, we use PID controllers to execute the flight controls.
Additionally, a vessel deck emulator, which can emulate
movements of a vessel deck in high sea state conditions, is
designed and used to validate the reliability and robustness
of the proposed architecture. This emulator includes an ‘H’
landing sign surrounded by 4 red LEDs, and it provides a
realistic emulation of the pose and heave motion of a vessel
deck.

The organization of this paper is as follows. In Section 2,
the background information of the components of the
system is presented, including AR.Drone, the self-designed
landing platform, and a Vicon Motion Capture System.
Coordinate conventions are also introduced. Section 3
introduces how the landing platform is designed and how
it works. The long range landing platform detection and
tracking are presented in Section 4, including camera
configurations, methods to recognize the landing sign,
state estimation algorithms, and approaching procedure.
Section 5 introduces the hovering and landing stage when
the drone approaches to the landing platform. Image
processing methods, state estimation algorithms, motion
control, and the architecture of algorithms are presented.
Indoor experiment results are presented in Section 6.
Finally, conclusions are presented and opportunities for
future work are discussed in Section 7.

2 Back Ground Information

Here we present the hardware and system architecture
we developed for the testbed. Because the on-board
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camera and sensors, the landing platform, and the motion
capture system which is used as ground truth are working
in different coordinate frames, we will also define the
coordinate frames and introduce the transformation among
them in this section.

2.1 Testbed Description

2.1.1 Parrot AR.Drone

The micro UAV we used in this work is a Parrot AR.Drone.
AR.Drone is a quadrotor helicopter that has a 6 degree of
freedom internal IMU, an ultrasonic altimeter, a forward-
looking (front) camera and a downward-looking (bottom)
camera [21], with a 640×360 resolution for both cameras.
For the front camera, we measured the horizontal FOV is
about 60◦, and the vertical FOV is about 30◦. For the bottom
camera, we measured the horizontal FOV is about 40◦, and
the vertical FOV is about 25◦.

With the sensors equipped on-board, altitude z is
determined by a ultrasonic altimeter, roll angle φ and
pitch angle θ are calculated by using data from an IMU.
Estimations of these states are directly available from the
Parrot AR.Drone. Although yaw angle ψ is also provided,
we don’t use it due to its low accuracy – the yaw drift
is about 12◦ per minute when flying and about 4◦ per
minute when in standby [22]. For yaw angle ψ and
relevant position estimation, our solution is using vision
algorithms.

According to [22], there are 4 control channels to
control AR.Drone: (1)Roll angle, (2)Pitch angle, (3)Angular

velocity of yaw, and (4)velocity of the altitude direction. We
denote them as:

u1 = φ (1)

u2 = θ (2)

u3 = ψ̇ (3)

u4 = ż (4)

Because of the limited capability of the ARM processor
equipped on AR.Drone [22], we run the system code on
a ground computer and stream commands to the UAV
over a Wi-Fi connection. The UAV streams IMU data and
camera images to the ground computer also over the Wi-Fi
connection. From our experiments, the delay of the Wi-Fi
connection do not cause the failure of the state estimation as
well as the control.

2.1.2 Vessel Deck Emulator

We emulate the movement of the ship deck in the sea,
using our self-designed landing platform. See Fig. 1. The
motivation to design this landing platform is to emulate
pose change and heave motion of a vessel deck. The ship
can be modelled as a rigid body moving in the sea [1, 4],
such that the movement of a ship deck can be simulated by
an attitude-programmable plate. The concept that 3 points
define a plane is used in the design of the landing platform.
The same idea is adopted in designing the landing platform
in [23].

Fig. 1 The landing platform

(a) Top view of the plate. (b) Bottom view of the plate.

(c) Landing platform base. (d) Side view of the platform.
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Fig. 2 Body frame

The landing platform includes 2 pieces: a square plate
and a bottom base. The square plate is powered by 3
independent servos deployed on the back, and they are
located at the 3 vertices of an equilateral triangle. Each servo
is connected with a rigid arm at the joint, which is used to
change the height of that vertex. The servos are controlled
by a STM32 ARM processor, which sends PWM signals to
change the angle of arms. On the top side of the square plate,
an ‘H’ sign for landing is attached at the center. Besides
that, 4 red LEDs are deployed at the 4 corners of the ‘H’
sign. These LEDs are used to guide the drone from long
distances.

The function of the base is to hold the plate. There are
3 sliding grooves. We set the arms in those grooves and
make sure the arms move in a limited area, so the plate will
not move away from the base. The details of the landing
platform is introduced in Section 3.

2.1.3 Vicon Motion Capture System for Ground Truth

We also use a Vicon Motion Capture System (including 8
Bonita cameras capture up to 250 fps with one megapixel of
resolution) to provide state measurements for the quadrotor,
which is assumed as the ground truth. We emphasize that,

Fig. 3 Inertial frame and local reference frame

the measurements from Vicon are only used for validation,
and the drone only uses the information from on-board
sensors to realize its autonomous flight.

2.2 Coordinate Frames and Transformations

Four coordinate frames are used in this work. The first
3 coordinate frames are 3D right-handed, and the unit is
meter. The inertial or east-north-up (ENU) frame, denoted
as N , is the basis for Vicon measurements and provides
the inertia position. The origin is set to be the center of
our experimental site. East, north, and up will be referred
to as the axis xN , yN , and zN , respectively. The quadrotor
body frame B, with the origin to be the bottom camera’s
lens’ center, xB axis between rotors 1 and 2, pointing to the
optical axis of the front camera, yB between rotors 2 and 3
and zB pointing to the optical axis of the bottom camera,
is used to define the vehicle motion. Because the rigid
connection between the body of quadrotor and the bottom
camera, which we use as the image source, the body frame
B also works as the camera frame. Local reference frame
L works as the intermediate frame of the inertial frame and
the body frame. The origin of local reference frame is same
as the body frame, while xL points to the north, yL points to
the east, and zL points downward. See Figs. 2 and 3.

The last frame is the image frame I , used for both the
front camera and the bottom camera. Frame I is a 2D frame,
with the origin OI to be the top-left point of the image, U

axis along the length, and V axis along the width. The unit
of image frame is pixel. See Fig. 4. The coordinate of an
arbitrary point P is (u, v) with respect to the image frame.

Figure 5 shows the optical geometric relationship
between the bottom camera and the drone’s body. In the 3D
chart of Fig. 5, OB is the center of the camera’s lens, and
also is the origin of frame B. Distance between OB and the
center of the image plane is f , which is the camera’s focal
length. In the 2D chart of Fig. 5, OI is the origin of image
frame, and the coordinate of image center O0 is (u0, v0)

with respect to the image frame and (0, 0, f ) with respect
to the body frame. The coordinate of point P0 is (u, v) with
respect to the image frame and (x0, y0, f ) with respect to
the body frame.

Fig. 4 Image frame
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Fig. 5 Relationship between
image frame (respect to the
bottom camera) and body frame

Now we define rotation matrices for the 3D frames.
Let −→

pB be the vector respect to frame B, where −→
pB =[

xb yb zb

]T
. And let CL

B be the rotation matrix which
transfers the vector respect to frame B to the vector respect
to frame L. So −→

pL = CL
B
−→
pB . Also, by chain rule, CN

B =
CL

BCN
L . From Fig. 3, we have the rotation matrix

CN
L =

⎡

⎣
0 1 0
1 0 0
0 0 −1

⎤

⎦ (5)

Rotation matrix CL
B can be generated from sin and cos

functions of Euler angles. We set φ be the roll angle, θ be

Fig. 6 Servo distribution on the bottom of landing plate

the pitch angle, and ψ be the yaw angle. We also denote sθ

for sin θ and cθ for cos θ . Then we have

CL
B =

⎡

⎣
cθcψ −cφsψ + sφsθcψ sφsψ + cφsθcψ

cθsψ cφcψ + sφsθsψ −sφcψ + cφsθsψ

−sθ sφcθ cφcθ

⎤

⎦

(6)

From Fig. 5, we can derive the transformation from image
frame I (respect to the bottom camera) to body frame B.
Suppose a light source, located at point P , sends light to
point OB through point P0, where P0 is located at the image
plane. We have

u = y0

k
+ u0 (7)

v = −x0

k
+ v0 (8)

Fig. 7 Servo point configuration
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where k is the size of the pixel, which is a constant
parameter of the bottom camera, and the unit of k is meter.
We also have
x0

xb

= f

zb

(9)

y0

yb

= f

zb

(10)

From Eqs. 7 to 10, we have

xb = − k

f

(
v − v0

)
zb (11)

yb = k

f

(
u − u0

)
zb (12)

The constant k
f

is determined by experiments using the least

square method [24]. We have obtained k
f

= 0.00146.

3 Vessel Deck Emulator

We have constructed a moving vessel deck emulator as the
testing platform. The detailed design and the programed
movement of the vessel deck emulator are introduced in this
section.

3.1 Vessel Deck Design

Figure 6 shows the distribution of servos on the square plate
for landing. The length of each side of the square is 60 cm.
Servos are located at three vertices of an equilateral triangle,
and the length of each edge is 40 cm.

Since the three independent servos share the same
configuration, Fig. 7 only shows one of them for illustration.
The height of this servo point is defined as h. Distance
from the joint to the bottom of the servo d is measured
as 1 cm, and length of the rigid arm l is measured as
7 cm. The angle between the landing plate and the arm α

is programmable, and h changes when α changes. From the
geometric relationship shown in Fig. 7, we have

h = l sin α − d (13)

Since h reaches the maximum value of 6 cm when α = π
2 ,

and reaches the minimum value of 0 cm when α = β, α is
constrained as β ≤ α ≤ π

2 .
Under this configuration, from calculation, the landing

platform has the capability of a maximum 6 cm heave
movement and a maximum 10◦ pose angle movement (pose
angle is the angle between the plate plane and the bottom
base plane). Suppose that the vessel is 30 meters wide, from
the geometric relationship, if the slope of deck is 10◦, the
minimum wave height is 5.2 m ( 5.2

30 ≈ sin(10◦)). According
to [4], this condition is under sea state 6, which is the “very
rough” level.

Fig. 8 Heignt control to each servo point

3.2 Deck Control and Results

We program the landing platform to emulate the deck
motion under unfavorable sea state condition. Sinusoidal
function is commonly used for simulating the movement of
a vessel deck [4]. For our landing platform, we program
the height of each servo point with a sinusoidal function
independently. See Fig. 8.

Figure 9 is the actual motion of the landing platform
under the control commands, and the data is an extracted 8
seconds’ segment of a test from Vicon. The top plot is the
position of the center of ‘H’ sign. The bottom plot is the
attitude of the landing plane. From Fig. 9 we can see that the
maximum altitude of the ‘H’ sign is 6 cm, and the maximum
absolute roll and pitch angles of the landing plane are 10◦.
According to the analysis in Section 3.1, this movement
emulates the deck motion of a vessel which is 30 meters
wide under sea state 6 (very rough).

4 Long Range Landing PlatformDetection
and Tracking

For successful autonomous landing, the first task is to detect
the landing platform. After detection, the drone should be
able to track and approach to the platform autonomously.
This section presents the method we used to achieve this
goal.

Fig. 9 The motion of the landing platform
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Fig. 10 Front camera
configuration after the
modification

(a) Top view of the front camera. (b) Bottom view of the front camera.

(c) Front view of the front camera. (d) Side view of the front camera.

4.1 Front Camera Configuration

The front camera of AR.Drone is originally set to look
forward, and as we discussed in Section 2.1, it has an
approximate 60◦ horizontal FOV, and an approximate 30◦
vertical FOV. However, if this configuration is used without
any adjustment, even if the algorithm can drive the drone
to approach the landing platform, there will be a blind zone
since the landing platform will not show in neither the view
of front camera nor the view of the bottom camera. To
eliminate the blind zone, we did some modification on the
front camera. First, we changed the fix angle of the camera.
It points along the X axis of body frame B before. After
the modification, it points a little downward, and the central
view respect to B is in X-Z plane, with about 75◦ of angle
to X axis. Second, we rotated the camera by 90◦. So it

has an approximate 60◦ vertical FOV, and an approximate
30◦ horizontal FOV. Figure 10 shows the front camera
configuration after the modification.

Figure 11 illustrates the entire camera configuration after
the modification. In Fig. 11, α is the vertical FOV of
the front camera, and β is the angle looking backward
of the front camera. The distance between the drone and
the landing platform is notated as l. The coordinate of the
landing platform in the image frame is (u, v), and since it
rotated by 90◦, in side view, only u is shown there.

From this configuration, if the drone has enough altitude
h, there will be an overlap FOV area between the front
camera and the bottom camera. And once the landing
platform appears in the overlap area, the system switches
to bottom camera mode autonomously and it won’t have a
blind zone.

Fig. 11 Camera Configuration
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Fig. 12 Red LEDs and ‘H’ landing sign configuration

4.2 Landing Platform Recognition

We fixed 4 red LEDs at the 4 corners of the landing ‘H’ sign.
As we introduce in Section 2.1.2, these LEDs are used for
the UAV to search the landing platform from a long range.
See Fig. 12. We note this is a simplified model of the reality.
For long range shipboard detections, the ship can be seen as
a single hot spot by the on-board IR camera [25]. Limited by
the AR. Drone‘s cameras and indoor environment, we use
red LEDs to simulate the hot spot and use the front camera
of the AR. Drone to recognize and track the red LEDs.

In this part, red dots recognition algorithm is designed
and used. The algorithm first convert the image into 3
matrices to store the RGB values. A simple but effectively
algorithm is used. The dot which has the R value greater
than 150, G and B values are smaller than 80 is considered
as the red dot. After the algorithm searches over the entire
image, a matrix is generated to store the coordinates in
the image frame of the red dots. Then the average of
the coordinates is calculated, which is considered as the
coordinates of the landing platform. Figure 13 shows the
recognition results. The recognized red dots are circled with
green circles, and the calculated average coordinate (landing
platform coordinate (u, v)) is circled with a blue circle.
We note the current algorithm can’t distinguish between
lights belonging to the landing pad and others, and we don’t
have other red light sources in the experiment area. This
limitation will be studied in future.

4.3 States Estimation

After we get the coordinate of the landing platform in
the image frame, the next step is to estimate the states of
the drone. As we introduce in Section 2.1.1, the altitude
z, roll angle φ and pitch angle θ are directly available

Fig. 13 Red LEDs recognition and landing platform calculation

from AR.Drone. The goal here is to estimate the heading
angle and the horizontal distance between the drone and the
landing platform.

4.3.1 Heading Angel Estimation

The heading angle we discussed here represents the angle
between the line connecting the center of the landing
platform and the projection of the drone on ground, and
the projection of the x axis of the body frame B (xB ).
Coordinate v of the landing platform in the image frame
is used to determine the heading angle ψ . Because the
horizontal FOV we measured is 30◦, and the pixel number
is 360 in that direction, we assume that v = 359 and v = 0
represent ±15◦ heading angle, and v = 180 represent 0◦
heading angle. Furthermore, the relation between coordinate
v and heading angle ψ is assumed as linear. Then we get the
heading angle estimation represented in Eq. 14.

ψ = v − 180

12
∗ π

180
(14)

4.3.2 Horizontal Distance Estimation

Coordinate u of the landing platform in the image frame is
used to determine the horizontal distance l (assuming the
yaw angle ψ = 0). Refer to Fig. 11. The vertical FOV is
60◦ (α), and there is a 15◦ backward view (β). The pixel
number in that direction is 640. Since we know altitude
h and coordinate u, from geometric relationship, we can
calculate l. First, we define angle θ to be the angle between
the optical line connecting the lens’ center and the landing
platform, and the main axis of the lens. We get

tanθ = 320 − u

w
(15)
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where w is equivalent pixel number of the distance between
the center of the image plane and the center of lens.

We also have

tan
π

6
= 320

w
(16)

Combining Eqs. 15 and 16, we have

θ = arctan
(320 − u) ∗ tanπ

6

320
(17)

If θ is greater than −15◦, the landing platform is in front of
the drone, and

l = h ∗ tan(θ + 15 ∗ π

180
) (18)

If θ is smaller than −15◦, the landing platform is in back of
the drone, and

l = −h ∗ tan(θ + 15 ∗ π

180
) (19)

4.4 Approach Procedure

In the stage of approaching from long range, the goal is to
drive the drone to an area above the landing platform. Once
the approach process completes, the drone will switch to the
bottom camera autonomously, and the landing ‘H’ sign will
be located in the FOV of the bottom camera. To achieve
this goal, a robust approaching procedure is designed and
introduced in this section. Since we already have the state
estimation, the control algorithm is also introduced.

4.4.1 PID Control Law

A PID control method for discrete time systems is used in
this work. In general, let s(k) be the state measured in step
k, sd(k) be the desired state of step k, then the error at step
k is

se(k) = sd(k) − s(k) (20)

The summation of historical errors at step k is

set (k) =
k∑

i=0

se(i) (21)

The difference of error at step k is

sed(k) = se(k) − se(k − 1) (22)

Then the control input u at step k is defined as

u(k) = Pse(k) + Iset (k) + Dsed(k) (23)

Where P , I , D are the gains of the PID controller.
For the control of heading angle ψ and roll angle φ, the

goal is to maintain them equal to 0◦. The measured angles
are the control error inputs, since the goal is to drive them
to 0◦. If the heading angle equal to 0◦, it means that the
head of the drone is pointing to the landing platform. Under

that condition, we can change the pitch angle θ to drive the
drone to approach to the landing platform. For the control
of altitude z and pitch angle θ , the desired value is changing
during the approaching, and the detailed procedures are
presented next.

4.4.2 Approach Process

First, the drone takes off from an arbitrary position in the
lab, hovering at 2 meters. Then it turns around without
position change to find the red dots. After the red dots
appear in the view of the front camera, the algorithm locks
the red dots, and calculates the relative heading angle.
Heading angle PID controller adjusts the heading angle
around 0◦. Under this condition, the drone changes its
pitch angle to approach the landing platform. Notice that
the drone approaches the landing platform only when the
heading angle is small. If the angle is not small, the drone is
programed to stop moving forward and hover at the current
position, while the heading angle PID controller will drive
the heading angle to 0◦.

When approach, the red dots’ position in image is also
changing. To make sure the drone can always see the red
dots, an altitude PID controller drives the drone to decrease
its altitude if the coordinate u of the landing platform
is too close to the image boundary during the approach
process. Once the altitude reaches to 1 meter, the altitude
PID controller stabilize the height to be 1 meter without
further descending. This is because at 1 meter altitude, the
view of the bottom camera is clear and wide enough for
later landing. During this process, the horizontal distance l

is calculated by using Eqs. 18 and 19.
Finally, when l becomes negative, which means the

landing ‘H’ sign is in the overlap FOV area between the
front camera and the bottom camera, the algorithm switches
to the bottom camera mode autonomously, and the landing
stage algorithms start to work. Figure 14 is the flow chart of
the designed approach process.

5 Hovering and Landing

After the drone hovers above the landing area, the second
stage starts and the goal is to land on the ‘H’ sign accurately.
This section presents our methods to achieve this goal.

5.1 Image Processing

‘H’ landing sign is chosen as the landing beacon due to its
widely used. The goal for the image processing is to find
the ‘H’ sign in the image and locate the center of the sign in
the image frame in real-time. Image moments technique is
used for the ‘H’ sign tracking. In image processing, image
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Fig. 14 Flow Chart Illustration

moment usually contains some special characteristics of the
contour, and image moment is generally used to recognize
certain objects or patterns [5].

Before the flight, the contour of a standard ‘H’ is
extracted from a reference image. During the flight, ‘H’ sign
tracking algorithm keeps comparing the moment of each

Fig. 15 Reference image

qualified contour derived from each image frame with the
standard moment of ‘H’ contour. If the similarity of the most
similar contour is within a selected threshold, the contour
will be recognized as the ‘H’ landing sign. In this part,
OpenCV library functions are used for contour extraction
and comparison. Details are presented next.

Fig. 16 Contour of a standard H
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Fig. 17 State machine of the image processing

5.1.1 Standard ‘H’ Contour Extraction - Before the Flight

Figure 15 is the reference image we used for standard ‘H’
contour extraction. We also printed it out as the ‘H’ landing
sign on the landing plate. The reference image is a binarized
image. After we load it in OpenCV environment, function
‘findContours’ is called to extract all contours. We select
and save the contour of ‘H’, and use red line to draw the ‘H’
in Fig. 16.

5.1.2 Real-time ‘H’ Sign Tracking - During the Flight

During the flight, the bottom camera will capture color
images in 20Hz. For each image, it will first be converted to
a gray image. Furthermore, the gray image will be converted

to a binarized image by carefully selecting a threshold. We
can do this because the ‘H’ sign has high contrast with the
background. The binarized image will be used to extract
contours. Before we extract the ‘H’ sign’s contour, a de-
noising process will be conducted. After that, we extract all
contours detected in the image, and eliminate the contours
which are too small to be the ‘H’ contour by calculating the
contour area. Then the contours left will be compared with
the standard ‘H’ contour saved before. OpenCV function
‘matchShapes’ is used for the comparison. The function
first calculates the moment of contour, and then compares
it with the standard ‘H’ contour moment. The result is
given as ‘comre’, which represents the similarity of them.
The smaller the ‘comre’ is, the higher similarity they have.
A threshold for ‘comre’ is set to be 0.5. In each image
frame, the contour which has the minimum ‘comre’ with
the standard ‘H’ contour, which is also within the threshold,
will be selected as the ‘H’ landing sign. Figure 17 is the state
machine of the image processing.

Figure 18 shows the operation results during the image
processing. Figure 18a is the original color image taken
from the bottom camera. Figure 18b is the gray image
converted from Fig. 18a. Figure 18c is the binarized image
after de-noising. Binalize makes it easier to find contours,
and de-noising eliminates the small dots, which decreases
the number of invalid contours and reduces the burden
on comparing algorithms. Figure 18d shows a case that
‘H’ landing sign is detected. Once the algorithm finds the
‘H’ landing sign, the contour of ‘H’ will be drawn. Then,
OpenCV function ‘minAreaRect’ is used to bound the ‘H’
with a minimum area of rectangular, and also to provide
the center coordinate in the image frame I . Because ‘H’ is

Fig. 18 Operation results during
the image processing

(a) Original color image from the bot-
tom camera.

(b) Gray image.

(c) Binarized image with de-noising. (d) 'H' landing sign detected.
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symmetric, this coordinate is also the coordinate of the ‘H’
landing sign. After getting the center coordinate, we draw a
small circle at the center.

Because the landing ‘H’ sign will move with the deck
emulator, it will not always be parallel to the X-Y plane
of the body frame. To further test the robustness of the
proposed ‘H’ sign detection algorithm, we take pictures of
the ‘H’ sign with different orientations and distances, using
different cameras under different lighting conditions to test
if the algorithm can still work. Figure 19 shows some of the
test results.

In Fig. 19, the ‘Bright light condition’ is obtained by
using a computer screen to show the ‘H’ landing sign,
the ‘Medium light condition’ is obtained in our lab with
all lights turned on, the ‘Dark light condition’ is obtained
in our lab with only half lights turned on. The ‘Smart-
phone camera’ we used has 1920×1080 resolution, while
the AR.Drone bottom camera has 640×360 resolution. The
‘Medium distance’ in this test is 60 cm, while the ‘Short
distance’ in this test is 30 cm. In Fig. 18d, the distance from
the sign and the camera is 1m.

From these experiments, we conclude that the ‘H’ sign
detection algorithm is robust. It can work under different
lighting conditions, different resolutions of camera, differ-
ent distances, different orientations and different tilt angles.
Additionally, we tested the maximum tilt angle of the ‘H’
when this algorithm works using another experiment, and
found that the maximum tilt angle is 20◦. Since the maximum

pose angle of the designed deck emulator is 10◦, the pro-
posed algorithm can track the ‘H’ landing sign successfully
when the landing platform is moving.

5.2 State Estimation

Only on board sensors are used for state estimation. Sensors
provided by AR.Drone are a 6 degree of freedom internal
IMU, an ultrasonic altimeter, and a forward-looking (front)
camera, and a downward-looking (bottom) camera.

Six states are required for autonomous landing, including
3 components of position vector with respect to local
reference frame

(
xl, yl, zl

)
, and 3 Euler angles

(
φ, θ, ψ

)
.

In this section, we present how to calculate these states
by using sensors mentioned above. Notice we only use the
bottom camera during the landing stage.

Two Kalman filters are designed to improve the
estimation accuracy. States for the first Kalman filter are
zl , φ, and θ , which are always available. And states for the
second Kalman filter are xl , yl , and ψ , which are available
only when ‘ H‘ landing sign is detected.

From AR. Drone system, users can directly acquire
altitude zl , roll angle φ, and pitch angle θ , where zl is
calculated using ultrasonic altimeter, and φ and θ are
calculated using the IMU.

Although AR.Drone also provides users with the yaw
angle ψ , the yaw angle drifts significantly. Since we don’t
use GPS or other external positioning systems, we can’t

Fig. 19 ‘H’ sign tracking
algorithm robustness test

(a) Bright light condi-
tion; Smart-phone cam-
era; Medium distance.

(b) Medium light condi-
tion; Smart-phone camera;
Medium distance.

(c) Medium light condi-
tion; AR.Drone bottom
camera; Short distance.

(d)  Dark  light  condition;
AR.Drone bottom camera;
Medium distance.

(e) Dark light condition; AR.Drone bot-
tom camera; Medium distance.
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acquire position information directly. Solutions for xl , yl ,
and ψ estimation are obtained by using images once the ‘H’
landing sign is recognized.

After we bound the ‘H’ sign with a minimum area
of rectangular by calling the OpenCV library function
‘minAreaRect’, which is the last step when the ‘H’
landing sign is recognized in the image processing, the
angle between this rectangular’s long side and the image’s
long side is also provided in the output of the function
‘minAreaRect’. According to the 2D chart shown in Fig. 5,
this angle is between ‘H’ landing sign’s vertical axis and the
xB axis of body frame. We denote the angle as γ , therefore
γ is the relative heading angle between the drone and the
landing platform. We denote the angle of ‘H’ landing sign’s
vertical axis and north direction (xL axis) as δ, so δ is the
setting angle of the landing platform respect to the inertial
frame. Then we have

ψ = γ + δ (24)

In our experiments, we set δ = 0, and then the relative
heading angle γ is equal to the yaw angle ψ . We note that
since the ‘H‘ shape used for the landing pad is symmetric,
the heading estimation will have 180 degrees of uncertainty.
In real applications, we shall use other information to
eliminate that uncertainty. For example, when approaching
from the long range, the heading direction of the ship could
be determined, based on which a unique heading angle γ

can be determined.
For position vector −→

pL(xl, yl, zl) estimation, we have

−→
pL = CL

B
−→
pB (25)

Once we obtain the values of φ, θ , and ψ , rotation matrix
CL

B is determined. Combining Eq. 25 with Eqs. 11 and 12,
we rewrite Eq. 25 as

⎡

⎣
xl

yl

zl

⎤

⎦ =
⎡

⎣
C00 C01 C02

C10 C11 C12

C20 C21 C22

⎤

⎦

⎡

⎢
⎣

− k
f
(v − v0)

k
f
(u − u0)

1

⎤

⎥
⎦ zb (26)

In Eq. 26, the unknown components are xl , yl , and zb. By
expanding Eq. 26, the third row becomes

zl =
{
sθ

[
k
f

(
v − v0

) ]
+ sφcθ

[
k
f

(
u − u0

) ]
+ cφcθ

}
zb

(27)

Once we acquire zb from Eq. 27, −→
pB and −→

pL can be
calculated.

5.3 Landing Controls

AR.Drone de-couples the controls of motors’ speed into 4
independent controls of roll and pitch angles, yaw angle
rate and altitude rate, while positions are controlled by

controlling the roll and pitch angles. The PID controller
introduced in Section 4.4.1 is used.

For hovering and landing on the ‘H’ sign, the drone is
required to stay at a position above the sign. The errors
of positions are calculated respect to the body frame, and
the desired position (xb

d, yb
d) is (0, 0). Thus the errors of

positions are xb
e = −xb and yb

e = −yb.
We also require the forward direction of the drone

parallel to the ‘H’ sign when landing. So the desired value
of γ is 0 and the error is γ e = −γ .

The error of altitude is zl
e = zl

d − zl , where the
desired altitude zl

d is designed a prior. An altitude planner is
designed to calculate zl

d . During the hovering phase, zl
d is

set as a constant c (c is positive). During the landing phase,
it’s set to be a function of time t , such as zl

d = −qt + c (q
is also positive, and used to control the descending rate).

Sensor data update rate of AR.Drone is 20 Hz. For
each update, control commands are also sent to AR.Drone.
Figure 20 shows the framework of the autonomous flight
algorithms during the landing stage.

6 Experimental Results

6.1 Approaching From Long Range

To test the long range approach, we put the landing platform
in the center of the flight area (Coordinate of the landing
platform in the inertial frame is (0, 0)), and initialize the
drone 2 m from the landing platform with random initial
heading directions. The length of our flight area is 5 m,
and the width is 3 m. For each experiment, we choose
different initial positions of the drone to take off to test
the performance. Using the designed procedure presented
in Section 4.4.2, we did 20 independent experiments. The

Fig. 20 Framework of the autonomous landing algorithms
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Fig. 21 Heading angle estimation and control results

success rate of these experiments is 100%, and the average
approaching time is 20s.

Here we use one experiment to illustrate the approaching
stage. In this experiment, the drone takes off at the bottorm-
right of the lab (Coordinate of the drone in the inertial frame
is (0.9,−2) when the drone starts to approach). The time
t = 0 is the time when the red dots on the landing platform
start to appear in the view of the front camera. At time
t = 16.5, the approach completes, and the drone hovers
above the landing platform.

6.1.1 Heading Angle Estimation and Control

As presented in Section 4, the key factor for successful
tracking and approaching to the landing is accurate heading
angle estimation and control. Based on Section 4.3.1, the
coordinate V in the image frame of the calculated landing
sign is used to calculate the heading angle. See Eq. 14.

Figure 21 is the heading angle estimation and control
results. At t = 0, the red dots on the landing platform start
to appear in the view of the front camera. The estimated
heading angle is about 15◦, and the actual heading angle
obtained by the Vicon system is 22.5◦. After that, the
heading angle PID controller drives the heading angle to 0◦,
and tries to keep the heading around 0◦. We notice that at 4
seconds and 11 seconds, there are two heading angle peaks.
However, the heading angle drift will not cause approach
failure. As presented in Section 4.4.2, the drone only change
its pitch angle to approach when the heading angle is small
(within ±5◦). If the absolute heading angle is larger than
5◦, the drone will first suspend approaching and correct the
heading angle.

Figure 22 shows the calculated coordinate V of the
landing platform in the image frame during the approach.
We noticed that the trend in Fig. 22 is similar to the

Fig. 22 Coordinate ’V’ of the landing platform in image frame

estimated heading angle in Fig. 21, which is because the
estimated heading angle is calculated using Eq. 14.

We define the estimation error as the difference
between the ground truth and the estimated value during
the approaching stage. In this experiment, the average
estimation error during this flight is 1.03◦, the standard
deviation of the estimation error is 1.91◦, and the maximum
absolute error estimation is 8.35◦. We conclude that our
heading angle estimation algorithm is suitable. According
to the ground truth, after the yaw angle becomes stable at 3s
to the end of the test, the average heading angle is −1.29◦,
the standard deviation of the heading angle is 3.04◦, and the
maximum absolute heading angle is 6.49◦. We conclude that
our heading angle control algorithm is suitable.

Fig. 23 Altitude estimation and control results
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Fig. 24 Coordinate ’U’ of the landing sign in image frame

6.1.2 Altitude Change During Approach

The altitude of the drone is designed to descend during
the approach process. As presented in Section 4.4.2, the
initial hovering altitude is 2 meters, and for hovering above
the landing sign, the altitude is 1 meter. The advantage
of altitude descending is to keep the landing platform in
the FOV of the front camera. Figures 23 and 24 show
the experimental results of the altitude change during the
approaching.

From Fig. 23, we see that the drone starts to descend
at 11s, and stops descending at 14s. After 14s the drone
keeps its altitude at 1m, and the oscillation around 15s is
the overshoot of the altitude PID controller. From Fig. 24,
we see that when the drone finds the red dots sign, the
initial calculated U coordinate of the sign in the image
frame is 120. During the approach process, the U coordinate
increases, and reaches 400 at 11s. If the altitude stays at 2
meters, and drone continues approaching, the U coordinate
will continue increasing. Thus, the landing platform will be
out of the FOV of the front camera before the drone hovers
above it. Because at 11s, the altitude starts to descend, the U

coordinate starts to decrease. The altitude stops decreasing
at 14s, and the U coordinate also stops descending. After
that, the U coordinate increases again, and reaches 570. At
this moment, the sign can be seen in the bottom camera of
AR.Drone, the algorithm switch to the bottom camera, the
approaching stage ends, and the landing stage begins.

6.1.3 Approaching Trajectory

Figures 25 and 26 show the trajectory of the approaching.
The position is captured by Vicon system. In Fig. 25, we
can see that the initial position of the AR.Drone is (0.9,−2)

in the inertial frame, and reaches (0, 0) when the approach

Fig. 25 Position change during the approaching

process ends. We noticed that at t = 11s, the drone suspends
to approach, which is because the heading angle is more
than 5◦. We can see that the coordinate keeps at (0.2,−0.6)

from 11s to 12s. A 2D trajectory is plotted in Fig. 26.

6.2 Experiment of Autonomous Hovering

6.2.1 Hover Above a Stationary Platform

In this experiment, the landing platform is stationary and
AR.Drone is required to hover above the ‘H’ landing sign
autonomously. Figure 27 shows the autonomous hovering
experiment results. The green dash is the ground truth (data
from Vicon motion capture system) and the red dot is
the estimated results. Table 1 is the summarized statistical
results of the estimation errors during 60 seconds. Positions
are given in cm, and Euler angles are in degrees.

Fig. 26 Trajectory of the approaching
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Fig. 27 Hover test results when
landing platform is stationary

Table 1 Evaluation of estimation performance when landing platform is stationary

xl(cm) yl(cm) zl(cm) φ(◦) θ(◦) ψ(◦)

Average error −0.05 −0.44 1.07 0.13 −0.02 −0.28

Error standard deviation 0.95 1.01 0.82 0.22 0.24 0.63

Max. absolute error 2.44 2.95 4.21 1.12 0.99 2.05

Fig. 28 Hover test results when
landing platform is moving

Table 2 Evaluation of estimation performance when landing platform is moving

xl(cm) yl(cm) zl(cm) φ(◦) θ(◦) ψ(◦)

Average error 2.75 −1.30 −1.74 −0.14 0.15 −2.14

Error standard deviation 1.34 1.21 3.15 0.23 0.35 1.82

Max. absolute error 7.43 4.72 8.55 1.73 1.56 2.73
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From the test results, we can see that the average error
of the position estimation is less than 2 cm, and the average
error of the Euler angle is less than 0.3◦. The standard
deviation of the position estimation error is around 1 cm,
and the standard deviation of the Euler angle estimation
error is less than 0.7◦. The maximum absolute position
estimation is less than 5 cm, and the maximum absolute
Euler angle estimation error is less than 3◦. We can also see
that the problem of yaw angle drift is eliminated once it is
estimated from the image.

6.2.2 Hover Above a Moving Platform

In this experiment, the landing platform has pose and heave
motion while the drone hovers above the ‘H’ landing sign
autonomously. Figure 28 shows the test results. The green
dash is the ground truth (data from Vicon motion capture
system) and the red dot is the estimated results. Table 2 is
the summarized statistical results of the estimation errors.
Positions are given in cm, and Euler angles are in degrees.

From the test results, we can see that the average error
of the position estimation is less than 3 cm, and the average
error of the Euler angle is less than 3◦. The standard
deviation of the position estimation error is less than 3 cm,
and the standard deviation of the Euler angle estimation
error is less than 2◦. The maximum absolute position
estimation is less than 9 cm, and the maximum absolute
Euler angle estimation error is less than 3◦.

Comparing with the results on the stationary landing
platform, we observe two aspects. First, oscillation of the
altitude is larger, which is due to the heave movement of
the landing platform. The ultrasonic altimeter measures the
distance from the drone to the surface of the platform.
Second, because of the movement of the landing platform,
the performance of hovering this time is slightly poorer

Fig. 29 Altitude landing performance

compared to the test when the landing platform is stationary.
The average error of both position estimation and Euler
angle estimation, the error standard deviation of both
position estimation and Euler angle estimation, and the
maximum absolute error of both position estimation and
Euler angle estimation are slightly larger.

6.3 Experiments of Autonomous Landing

The difference between landing and hovering is that the
desired altitude remains constant during hovering but
changes during landing. In landing, an altitude planner will
generate the sequence of desired altitudes, and the PID
controller will drive the drone to track the reference. At the
same time, position and yaw angle PID controllers are also
taking actions. Figure 29 shows the altitude when landing.
In Fig. 29, blue dots represent the actual altitude, and red
dots represent the desired altitude generated by the altitude
planner. Before 25.4 s, the drone is hovering with oscillation
due to the moving platform. The landing starts at 25.4 s
and ends at 29.8 s. From 25.4s to 29.4s, the actual altitude
is seen to follow the desired altitude. At 29.4 s, the actual
altitude drops to 26 cm, and ‘H’ sign is no longer completely
shown in the image, and the landing function of AR.Drone
is called. The drone lands on the platform at 29.8 s, and after
that it moves with the platform.

We further evaluate the landing accuracy through
statistical tests. We first test on a stationary platform, and
then test on a moving platform. For each situation, we did
20 independent experiments. In all experiments, the drone
finds the landing platform and lands on it autonomously.
Figures 30 and 31 show the landing accuracy results.

Figure 30 is the landing position results when the landing
platform is stationary. The red circle is the center of ‘H’,

Fig. 30 Position accuracy evaluation when the landing platform is
stationary
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Fig. 31 Position accuracy evaluation when the landing platform is
moving

and the blue stars are the landing positions from the trials.
After AR.Drone lands on the platform, the distance from the
body frame center to the center of ‘H’ sign is measured. The
average distance error is 7.9 cm, and the standard deviation
of the landing error is 2.64 cm. If we define success landing
as the case that the drone completely lands on the moving
platform, our landing success rate is 100%. Figure 31 is
the landing position results when the landing platform is
moving. The average distance error is 9.0 cm, and the
standard deviation of the landing error is 4.79 cm.

Compare with the accuracy when the landing platform
is stationary, this result is slightly poorer because of the
movement of the landing platform, but the landing success
rate is still 100%. Compare with [20], which did not define
clearly the success landing, the average distance error is
12 cm under no environment disturbance, and the maximum
success landing rate is reported as 90%, our results are
significantly better.

7 Conclusion and FutureWork

We present an autonomous approach for a quadrotor to
land on a vessel deck from long range. On-board IMU and
altimeter, image processing, and Kalman filters are used to
provide the state estimation. Experiments are implemented
on a self-designed landing platform, which can emulate the
deck motion of a vessel 30 m wide under sea state 6. Flight
results demonstrate the landing success rate of 100% with a
9 cm average distance error. In the future, we will resident
the landing platform on a ground vehicle which provides
additional horizontal motion of the deck. Additionally, wind
disturbance will be considered to make the algorithms more
robust.
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